

原子力委員会定例会 報告 2019.03.05

日本の中性子利用研究と施設連携

鬼柳善明

名古屋大学工学研究科 特任教授 日本中性子科学会 会長 北海道大学 名誉教授 西安交通大学 名誉教授

理化学研究所 客員研究員 日本原子力研究開発機構 J-PARCセンター客員研究員

大型から小型までの中性子源の現状とその利 用例の紹介(小型中性子源を中心に)

1. 中性子源の現状 2. 中性子とX線の違い 3. 科学·技術開発応用 電池、モーター、コンクリート、鋼材など 4. 産業応用 通信機器のソフトエラー 5. 医療応用:ボロン中性子捕捉療法 6. 中性子施設の連携に向けて 7.まとめ

1. 中性子源の現状 世界の主な中性子源

ORPHEE、HZBは2019年中に稼働停止

世界の加速器中性子源

他にも核データ測定用、イメージング用の中性子源が存在する。

BNCTを含めた加速器中性子源

日本の中性子源(BNCT用は除く)

中性子の使い方

照射

水分測定や油田検層

ボロン中性子捕捉療法(BNCT)

電子機器の「ソフトエラー」加速試験

分子・高分子・結晶などの構造解析と運動状態計測

材料・文化財・工業製品などのイメージング

エックス線は重い原子の方が相互作用が強い。 中性子は原子核(同位元素)毎に相互作用が違う。軽元素でも大きい。

X線(管電圧70kV) カメラシャッター:1/500

中性子線 カメラシャッター:1/500

缶の中に噴水の玩具をセットしてX線と熱中性子ラジオグラフィの結果 X線では、玩具内のモータなど金属部分が鮮明に見えるが、噴水の状況はわからない。一方、 中性子では、玩具の樹脂で内部のモーターなどが見えにくくなるが噴水の状況が鮮明に見える。(X線は管電圧を下げても噴水は見えにくい)。 持木幸一@東京都市大

(2)回折可能エネルギーで透過力が大きい

3. 科学•技術開発研究

大型中性子源J-PARCから小型のHUNS(北大)、RANS (理研)などを利用した研究

- Liバッテリー
- モーターの効率化(磁場可視化)
- •コンクリート(爆裂、劣化部可視化、塩害検査)
- 鋼材研究(配向、結晶層、介在物、溶接、日本刀)

Li電池の研究

黒鉛(Graphite)層間距離の変化

Li電池の充電量による黒鉛層の変化@北大HUNS

リチウム電池の黒鉛負極の格子面間隔の充電による変化 @HUNS

T Kamiyama, Y Narita, H Sato, M Ohnuma, Y Kiyanagi, Physics Procedia 88 (2017) 27 – 33₁₅

電池が動いている状態をそのまま観察@j-PARC

リチウムイオンニ次電池の劣化状態の非破壊評価 @J-PARC

協力:トヨタ自動車

電気自動車の性能向上において高性能電池の 開発(長寿命・高出力・大容量, etc)は不可欠

急速放電・急速充電サイクル後の電池の観察

車載電池アセンブリ

 充電量 0%
 10%
 20%
 30%

 通常の車載状況を 模擬した場合
 40%
 50%不均一な充電分布60%
 100%

 通常の車載状況を 模擬した場合
 40%
 50%不均一な充電分布60%
 100%

改良した車載状況 を模擬した場合

<u>中性子を用いた磁場の可視化@J-PARC RADEN</u>

モーター等の磁場関連機器の電力消費量は膨大

損失低減における課題

- ・ 加工による材料性能の劣化
- 磁場設計と実際の磁場とのかい離

組立後の性能を把握して、設計に反映するためには 機器そのものの磁場を直接観察する技術が必要

モデルモーターの磁場観察 稼働状態での磁場分布を観察 → 設計磁場との直接比較へ

中性子透過強度像

中性子偏極度画像

トランス試験体の漏洩磁場観察

トランスによる送電力損失=2~4%の電気を消費 → 漏洩磁場の観察による損失の評価へ

高強度コンクリートの爆裂@KUR

- 高強度コンクリート
 - 設計基準強度が36N/mm²を超えるコンクリート。
 - 建物の高層化に伴い、超高強度化が進み<u>需要が増加</u>している。
 - 一般的なコンクリートと比較して<u>緻密</u>。
 - 一方で火災時に発生する<mark>爆裂</mark>が懸念される。
- 爆裂とは?
 - 火災などの高温加熱に
 表層のコンクリートが
 が飛散・剥離する現象
 - 内部の鉄筋の耐火機能を 担保するコンクリートの 脱落により、火災時の 構造耐力低下につながり 兼ねない
 - <u>メカニズム</u>的には不明な 点が多い

(森田武:コンクリートの爆裂とその防止対策)

非破壊で水分分布をその場観測する。

高強度コンクリートの爆裂

爆裂時の水分挙動 -実験結果-

• 気中乾燥試験体 爆裂あり

・PP繊維混入試験体 爆裂なし

繊維が溶けたあとが水分などの通り道になっていると考えられる。

社会インフラ予防保全 コンクリート内損傷の透視@RANS

鉄鋼材料研究

結晶配向(テクスチャー)

結晶相の定量化

介在物の同定

溶接部の検査

日本刀の結晶組織構造研究

結晶配向(集合組織)の測定

高張力鋼の開発:軽い自動車を作るための材料@RANS 2014

開発に必要な時にすぐ測定できることが重要: 小型中性子源で可能なことが実証された。 複相鋼中のオーステナイト相分率評価@RANS (加工性と靭性:高い企業ニーズ)

Peaks of both textures are measured

Y.IKEDA et al. Nucl.Instr.Meth.A 833 (2016) 61-67

実験室 エックス線小角散乱 (SAXS) と中性子小角散乱 (SANS)の相補的利用@HUNS

10, pp. 1831–1837

(補足:新手法)パルス中性子イメージング

溶接鉄の結晶組織構造@HUNS

日本刀研究

番号	種類	作者	時代	年	生産地	刃長	全長
1	太刀	盛景	室町	1356 - 1361	備前	75 cm	104 cm
2	太刀	則綱	室町	1405	備前	75 cm	97 cm
3	打刀	資正	室町	1504 - 1526	和泉	65.5 cm	79 cm
4	太刀?	正光	昭和	1964	福岡	73 cm	94 cm

②則綱 佐藤@北大

④正光 大前@名大

(和鋼博物館所蔵) 北大、J-PARC,名大、島根大の共同研究

X線と中性子による透過イメージの違い

-log(T): Attenuation intensity

X-ray (86.6 kV, 1mA, 60ms × 5times)

Neutron (over all energy region)

※X ray: FPD (Dexela 1512N)
 Pixel Size (μm) 74.8
 Sensitive Area (mm2) 145.4 x 114.9
 Pixel Matrix (px) 1944 x 1536

K. Watanabe @ Nagoya University

結晶子サイズ (μm) (最大スケール 5 μ m)

盛景(1356~1361)備前

Û

焼入れ部(**110**面エッジ幅のブロードニング)

- •水分测定
- •油層探查
- ▪Si照射

ソフトエラー加速試験
 NTTネットワークサービス研究所
 名古屋大学
 北海道大学

小型加速器中性子源のソフトエラー試験への応用

近年、半導体デバイスの高集積化が進み、宇宙線起因の中性子線によるソフトエラー^{*1}が増加するリ スクが高まっている。通信装置等の高信頼が要求される電子機器はソフトエラーの発生を考慮した設計 が必須となっており、小型中性子源は効率的にソフトエラーを再現できる有用な開発ツールとなっている。 2016年12月、NTT-ATが小型加速器を用いてソフトエラーを再現させる『ソフトエラー試験サービス』の 提供を開始した。さらに、2018年11月、国連専門機関であるITU-T^{*2}にて小型中性子源を用いた通信装 置のソフトエラー試験に関する国際標準が制定され、国際的にも注目されている。

※1 ソフトエラー:永久的にデバイスが故障してしまうハードエラーとは異なり、一時的な故障でデバイスの再起動やデータの上書きによって回復する故障。 ※2 ITU-T(International Telecommunication Union Telecommunication Standardization Sector):国際電気通信連合

LSIデザインルールの微細化によって増加するソフトエラー

LSIデザインルールの微細化によりソフトエラーが急増している。永久に故障してしまう ハードエラーの故障率は微細化では変化せず一定であるのに対し、ソフトエラーは微細 化で増加している。

この様な傾向から通信装置ではソフトエラー対策が不可欠となっている。

%1 ITU-T Suppl._to-K.131 https://www.itu.int/rec/T-REC-K.Sup11-201711-I
%2 Xilinx Device Reliability Report https://www.xilinx.com/support/documentation/user_guides/ug116.pdf

ソフトエラー発生数のシミュレーション予測と北大中性子源実験

ソフトエラー発生用の中性子源を設計し、シミュレーションを行った。 機器にもよるが数分~10分程度で発生すると予測

※参照 : Eishi Ibe, Fellow, IEEE, Hitoshi Taniguchi, Yasuo Yahagi, Ken-ichi, Shimbo, and Tadanobu Toba 'Scaling Effects on Neutron-Induced Soft Error in SRAMs Down to 22nm Process' 40

ソフトエラー試験ビジネス

既に、ソフトエラーを再現させるソフトエラー試験サービスがNTT-AT社より提供^{※1}されており、様々 な高信頼が必要な業界から試験を請け負っている。 本サービスは、住重アテックス株式会社が保有する18MeV陽子加速器を用いている。

メーカー/型式	住友重機械工業製/CYPRIS370
加速粒子	陽子
加速エネルギー	18MeV
加速器サイズ	2.4m × 1.8m × 2.0m

通信装置のソフトエラー対策、ITU-T国際標準制定

2018年11月13日、国連専門機関であるITU-T(国際電気通信連合、電気通信標準化部門)において、宇宙線が主たる原因で ある地上の通信装置のソフトエラー対策に関する設計・試験・評価の方法および品質基準を定めた国際標準が制定された。 本国際標準の制定に向け日本電信電話株式会社、富士通株式会社、株式会社日立製作所、日本電気株式会社、沖電気工 業株式会社は、一般社団法人情報通信技術委員会に開設された「通信装置のソフトエラーに関する標準化Adhoc」(以下、 SOET_Adhoc: Soft error testing Adhoc)において共同で国際標準案を起草し、ITU-T SG5会合ではOrangeとともに勧告化 を推進。

NTT持株会社ニュースリリース http://www.ntt.co.jp/news2018/1811/181122a.html

ソフトエラーに関する動画公開中

YouTubeにて、ソフトエラー試験サービスおよび国際標準に関する動画をNTTが公開中

ソフトエラー試験サービス

通信装置のソフトエラー対策 ITU国際標準制定

https://youtu.be/Abv-ir5CcVY

https://youtu.be/ODAnsOM_46A

参考)加速係数

小型加速器の加速係数: F_A (自然界に対して何倍加速したかを示す値)を様々なデバイスで確認。

素子のタイプ

ソフトエラーの今後

- ・国際標準として、小型加速器による加速テストが認められた。
- 日本として、どうそれをリードしていくかが課題である。

外国における実験施設の開拓

測定法の標準化と普及

新素子による加速係数の測定

その他

5. 医療応用:ボロン中性子捕捉療法

ホウ素中性子捕捉療法 (Boron Neutron Capture Therapy: BNCT)

がん細胞にホウ素(10B)薬剤を集積し、 これに熱外中性子を照射して、がん細胞 を選択的に破壊する究極のがん治療法。

これまで原子炉中性子源を用いて臨床 試験が行われてきたが、一般病院での BNCT治療のためには加速器中性子源 の利用が不可欠となっている。

治験数と適用症例

JRR-4+KUR Total

放射線治療間の棲み分け

世界の原子炉ベースBNCT施設

日本の加速器ベースBNCT施設

(Beam Shaping Assembly) **BSA**

中性子減速体(Beam Shaping Assembly)の設計

目標値: IAEA基準に準拠

*IAEA-TECDOC-1223 "Current states of neutron capture therapy", IAEA (2001).

日本のBNCT施設の中性子スペクトルの例

京都大学(Cyclotron / Be BNCT):C-BENS

30MeV 1mA ・ターゲットの熱除去が容易

BNCTの臨床に用いられているホウ素化合物

BSH

GB-10

アルゼンチンのグループが悪性黒色腫に 用いている。BSHとほぼ同じ挙動を示 すと思われる。

我が国におけるBNCTの臨床研究

	がん腫	ホウ素薬剤	中性子線
第一世代 1951-1995	脳腫瘍 (開頭)	BSH	熱中性子 (原子炉)
第二世代 1996-2008	脳腫瘍 (非開頭) 悪性黒色腫 頭頸部がん (舌がん、 耳下腺がん、咽頭がん等) アスベスト中皮腫 etc	⋅ BPA⋅ BPA + BSH	熱外中性子 (原子炉)
第三世代 2009-	脳腫瘍 (非開頭) 悪性黒色腫 頭頸部がん	• BPA	熱外中性子 (加速器)

	[¹⁰ B]-L-BPA	[¹⁰ B]-BSH
▶ 属性	・アミノ酸 (AA)、ボロン酸	・籠型ホウ素クラスター
≻ 化学特性	・低水溶性 ・ ¹⁰ B:4.8% W/MW ・多価アルコールと複合体を形 成	・水溶性、2価無機イオン ・ ¹⁰ B:73.1% W/MW(- 2Na)
> 生物特性	・低毒性 ・細胞質、核内分布 ・蛋白合成に非資化	 ・低毒性 ・細胞内に分布、ミクロ分 布?
> 取り込み 機構	・がん細胞:LAT1、ATB ^{0,+} ・正常細胞:LAT2	・取り込み機構? 脳腫瘍血液脳関門を通過
▶ 適応がん腫	・悪性黒色腫 ・脳腫瘍 ・頭頸部がん etc. (BSHとの併用)	・脳腫瘍 etc. (L-BPAとの併用)
> PETプローブ	• [¹⁸ F]-FBPA	・未開発

世界の加速器ベースの BNCT 中性子源(場所)

世界の加速器ベースの BNCT 中性子源(表)

施設名	加速器	中性子発 生ターゲッ ト	陽子および中 性子エネルギー (MeV)	設計電流 値(mA)	現在の 電流 (mA)	現状
京都大学	Cyclotron	Be	P: 30 , N: < 28	1	1	Clinical trial
南東北病院	Cyclotron	Be	P: 30 , N: < 28	1	1	Clinical trial
筑波大学	Linac	Be	P: <mark>8</mark> , N: <6	5	<2	Physical meas.
国立がんセンター	Linac	Solid Li	P: 2.5 , N: < 1	20	12	Physical meas.
関西BNCT医療センター	Cyclotron	Be	P: 30 , N: < 28	1		Commissioning
江戸川 BNCT センター	Linac	Solid Li	P: 2.5 , N: < 1	20		Construction
名古屋大学	Electrostatic	Solid Li	P: 2.8 , N: < 1	15		Commissioning
大阪大学	—	Liq-Li		—	—	Planning
京都府立大学	—	—	_	—	—	Planning
岡山大学	Electrostatic	Solid Li	P: 2.8, N: < 1	15		Planning
Budker Institute (Russia)	Electrostatic	Solid Li	P: 2.0 , N: < 1	10	3	Developing
Helsinki University Central Hospital (Finland)	Electrostatic	Solid Li	P: 2.6 , N: < 1	30	20	Construction
SARAF (Israel)	Linac	Liq-Li	P<4, N: < 1	20 (?)	1-2	Developing
CNEA (Argentina)	Electrostatic	Be, ¹³ C	P, d : 1.4 , N: < 6	30	<1	Construction
Legnaro INFN (Italia)	Linac	Be	P<4, N: < 2	30	—	Developing
A-BNCT(Korea)	Linac	Be	P: 10 , N:<8	8		Construction
D-BNCT (China)	Linac	Li	P:3.5, N:<2	10		Developing
Xiamen BNCT Center (China)	Electrostatic	Li	p:2.5, N:<1	10		Developing

BNCT開発ガイドライン報告書をベースに改訂

IAEA-TECDOC-1223の改訂に向けて

TECDOC-1223の指標:

脳腫瘍の治療→浅部ガンは考えていない

原子炉中性子源を対象→加速器は考えられていない

既存の装置で基準を決定?→シミュレーション計算はしていない?

加速器BNCT装置の建設・普及、頭頚部ガン・皮膚ガンの割合の増加など、現状に 合わせた指針の見直しが必要である.

加速器BNCT装置に関する検討状況

(国の機関)

厚労省 BNCT審査WG報告書:意見募集中 経産省 BNCT開発ガイドライン:意見対応中

(日本中性子捕捉療法学会) ガイドラインを作成中

(ICNCT:国際中性子捕捉療法学会) 新TECDOCに向けて物理条件の内容を検討中

(IAEA)

物理特性の分野だけでも、TECDOCの早期改訂が望ましい。

*日本の医療施設での、治療実績が早く上がることが期待される。

6. 日本の中性子源施設の連携へ向けて

1)小型中性子源が色々な中性子実験に役立つことが実証されてきた。

2)日本は小型から大型までの中性子源がある。

3)中性子資源の効率的・効果的利用が望まれる。 中・小型でできることは中・小型へ、大型ですべきものを大型へ。

4) 中性子施設の測定レベルの不断の向上が望まれる。

5)人材育成を図って、中性子利用の普及・向上を行う。

人、もの、情報の交流が必要→中性子施設連携の確立

日本の加速器中性子源連携

JCANS Japan Collaboration on Acceleratordriven Neutron Sources 日本加速器中性子源協議会

JCANS(ジェイキャンス)は、日本における加速器駆動中性子源の研究を基礎として、中 性子ビームの実用技術及び産業実用までを含めたコンソーシアム形成までを指向する 総合的なネットワークです。

代 表 鬼柳善明 副代表 清水裕彦(学術) 副代表 三和田靖彦(産業)

ACADEMIA

* 北大、東北大、東大、名大、 京大、阪大、九大 * KEK、JAEA、理研 * 産総研、CROSS

INDUSTRY

トヨタ自動車、トヨタ中央研究所、 JTEKT、住友重工、金属技研、 三菱重エメカトロニクス、IHI

中性子源施設連携へ向けての動き

・学術会議マスタープラン

中性子施設ネットーワーク(中性子科学会)

J-PARCワークショップ「小型から大型までの中性子施設の連携研究会」 中性子科学会、J-PARC、JCANS共催

日本の施設が一同に会す、初めての研究会。研究会後に連携の議論

日時 平成31年3月28日 10:00-16:05 場所 東京大学 農学部 弥生講堂・一条ホール (プログラム) 開会挨拶 中性子科学会長&JCANS代表 鬼柳善明 10:00-10:05 J-PARCセンター長 齊藤直人 10:05-10:10 Ⅰ. 日本の中性子源の概要 10分 鬼柳善明 10:10-10:20 Ⅱ.稼働中施設の性能および応用分野 (発表18分、質疑応答5分、 交代2分) 1. 北海道大学 HUNS 加美山隆 10:20-10:45 2. 青森県量子科学研究センター 馬場豊美 10:45-11:10 3. J-PARC/MLF 金谷利治 11:10-11:35 大竹淑恵 11:35-12:00 4. 理研 RANS 5. 名古屋大学 NUANS (二) 章 谷山 12:00-12:25 6. 京都大学 KUANS 田崎誠司 13:25-13:50 7. 京大複合原子力研究所(概要+原子炉)川端裕司 13:50-14:15 KURNS-LINAC 佐野忠史 14:15-14:30 8. 同上 9. 住重アテックス 上本龍二 14:30-14:55 Ⅲ.稼働予定施設の現状と期待される性能 (発表17分 質疑3分) 1. 産総研中性子源 木野幸一、古坂道弘 14:55-15:15 2. iBNCT(医理工分野) 熊田博明 15:15-15:35 3. JRR-3 武田全康 15:35-15:55 閉会挨拶 中性子科学会基礎基盤部会長 清水裕彦 15:55-16:00

7. まとめ

中性子利用は、J-PARCができて、新たに注目を浴びるようになってきた感がある。

小型、中型、大型施設を階層的に利用した学術・産業利用が進むと考えられる。

中性子源施設の連携を行って、より効率的、効果的中性子利用ができるような環境整備を進めている。他プランとの摺合せ。

小型加速器中性子源を用いた、ソフトエラーの加速試験が、国際標準として認められた。自動運転など、これからますます進歩 するであろうIT社会の安全確保に重要になっていくものと考えら れる。

中性子捕捉療法は、これまで日本が世界をリードしてきたが、 加速器BNCT施設の建設は海外でも進められている。アメリカや ロシアの技術がでてきている。日本でのさらなる開発、治療の実 施が望まれる。