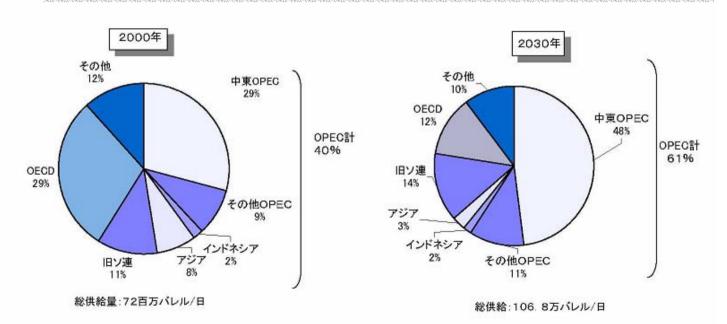


エネルギーセキュリティに係る基礎的データと分析

平成16年9月3日

エネルギーセキュリティに係る基礎的データと分析

- 地政学条件
 - 資源の偏在とその可採年数
 - 資源インフラネットワーク
- エネルギー需給関係


(世界)

- エネルギー需給見通し(紹介済)
- 先進諸国の燃料別構成、国産エネルギー比率
- 中国・インドのエネルギー事情 (日本)
- 各資源の輸入相手国比率
- 石油中東依存度
- 新エネルギーのポテンシャル
- 石油備蓄、ウラン権益確保の状況
- 環境制約としての地球温暖化問題

資源の偏在(石油)

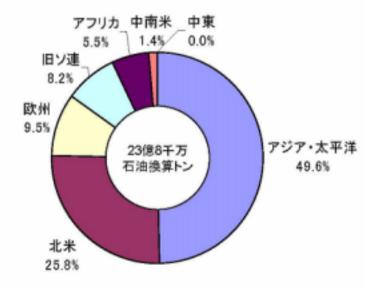
石油の多くは中東・OPECに偏在しており、OPECの占める割合はさらに高くなる見通しである。

(注)アジア:中国、インド、ASEAN(インドネシア除く)等

(出典) IEA/ World Energy Outlook2002

資源の偏在(石炭)

先進国についてみると、北米地域に石炭が多く、また生産されている。

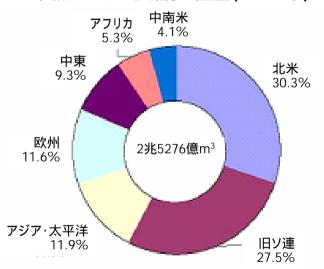

<石炭の地域別確認埋蔵量(2002年末時点)>

アフリカ 中南米 中東 0.2% 欧州 13.2% アジア・太平洋 29.7% 13.2% 14米 26.2%

(出典)BP statistical review of world energy 2003

(注)旧ソ連は、カザフスタン、ロシア、ウクライナの合計。

<石炭の地域別生産量(2002年)>

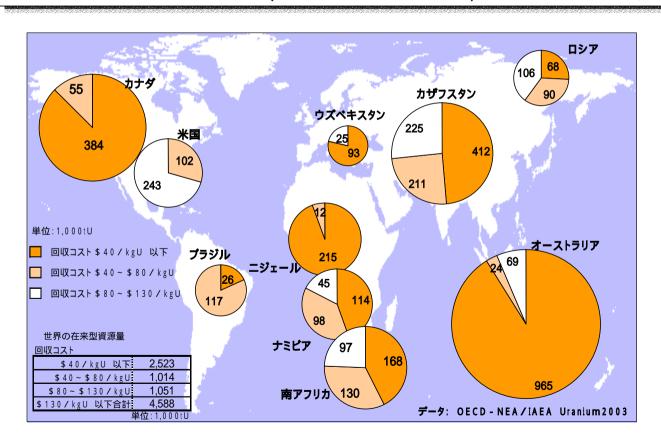

資源の偏在(天然ガス)

天然ガスは、中東と旧ソ連に偏在している。

<天然ガスの地域別確認埋蔵量(2002年末時点)>

中南米 欧州 4.5% 3.8% 北米 4.6% アフリカ 中東 7.6% 36.0% アジア・ 156**兆**m³ 太平洋 可採年数 8.1% 60.7年 旧ソ連 35.4%

<天然ガスの地域別生産量(2002年)>



(出典)BP statistical review of world energy 2003

(注)旧ソ連は、アゼルバイジャン、カザフスタン、ロシア、トルクメニスタン、 ウクライナ、ウズベキスタンの合計。

資源の偏在(ウラン資源の分布)

ウランは政情が安定している国(オーストラリアや北米等)に多く分布している。

エネルギー資源の確認埋蔵量と可採年数

石炭を除〈エネルギー資源の可採年数は40~60年である。

世界のエネルギー資源確認埋蔵量

資源インフラネットワーク (1/2) 欧州の石油パイプライン

資源量の少ない欧州では、石油及び天然ガスパイプラインを国際的に整備している。

石油 パイプライン

出典: European Commission "Documentation and Reports"

資源インフラネットワーク (2/2) 欧州の天然ガスパイプライン

資源量の少ない欧州では、石油及び天然ガスパイプラインを国際的に整備している。

天然ガス パイプライン

出典: European Commission "Documentation and Reports"

資源インフラネットワーク (2/2) 欧州の電力網

欧州は国際協調により電力網をネットワーク化している。

欧州UCTE地域における電力潮流状況 mus: LT GB KY MA

出典: European Commission

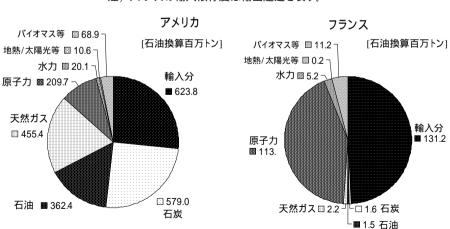
- "Documentation and Reports"
- "UCTE Monthly provisional values"

4

エネルギー需給関係(世界)(1/2) 先進諸国の燃料別構成、国産エネルギー比率

日本も含め世界各国は、エネルギー供給源の多様化とベストミックスによる供給安定化を図っている。

各国の燃料別構成(2002)**

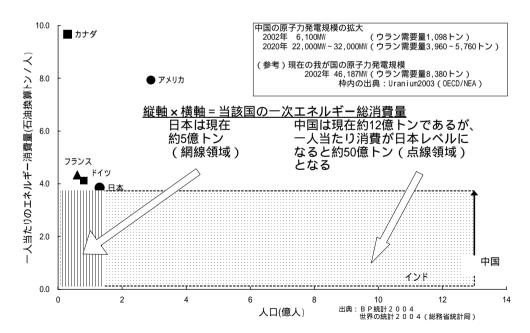

パイオマス等 図 7.2 ¬ 地熱/太陽光等 図 3.9 ¬ 水力 図 7.1 ¬	日本[石油換算百万トン]
原子力 ■ 76.9 ¬	
石油 ■ 0.7 → 石炭 □ 1.7	
石灰 日1.7	
V	
	■ 418.8 輸入分

各国のエネルギー輸入依存度*(2002)**

	全エネルギーの輸入依存度[%]	石油の輸入依存度[%]
イタリア	84.6	94.2
日本	81.0	99.7
ドイツ	61.1	96.1
フランス	49.4	98.1
アメリカ	27.2	59.4
イギリス	-13.8	-35.1
カナダ	-54.1	-37.3

*: 原子力は輸入エネルギーに含めず。

注)マイナスの輸入依存度は輸出超過を表す。



エネルギー需給関係(世界)(2/2) 需要拡大の可能性

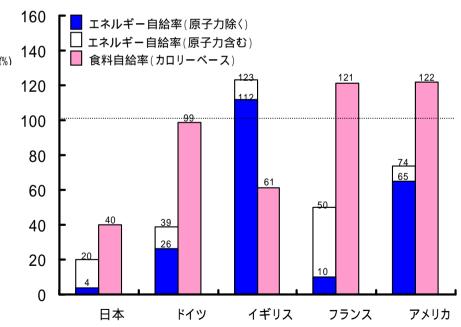
中国等で、エネルギー消費量が大幅に増加する可能性がある。

中国の一人当たりエネルギー消費量が日本レベルに達すると、年間石油換算で約50億トン(現在の日本の10倍規模)となる。また、中国のウラン需要について、2020年には4~6倍増になるとの予測(OECD/NEA)もある。

中国のケース

人口 約13億人 エネルギー消費量 約12億トン 一人あたりエネルギー消費量 約0.9トン/人

中国の一人当たりエネルギー消費が日本と同レベルとなると、中国のエネルギー消費は年間約50億トン(約38億トン増)に達する。

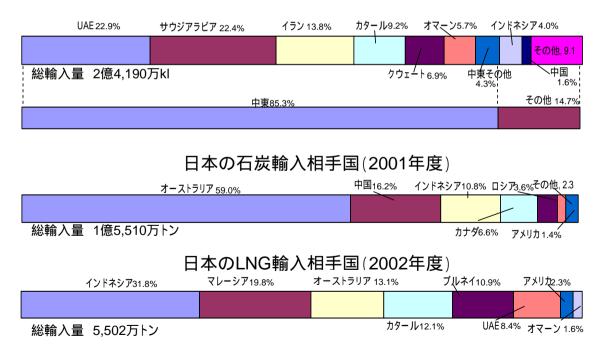

アジア全体で見ると

人口 約37億人 エネルギー消費量 約33億トン 一人あたりエネルギー消費量 約0.9トン/人

全アジアの一人当たりエネルギー消費が日本と同レベルとなると、全アジアのエネルギー消費は年間約143億トン(約110億トン増)に達する。

エネルギーと食料の自給率

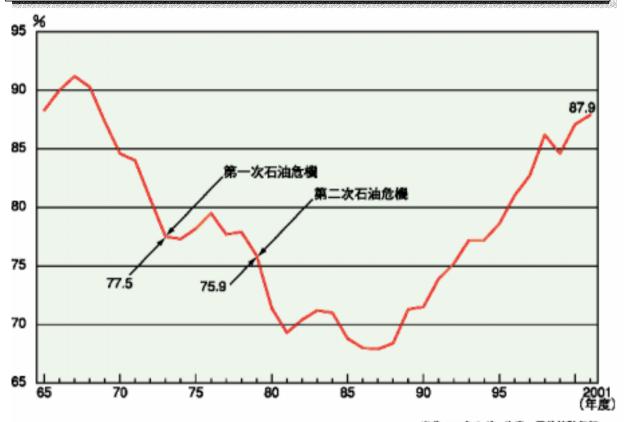
日本は、先進諸国と比べてどちらの自給率も低い水準である。とりわけ原子力を除〈エネルギー自給率は仏と並んで低いが、準自給エネルギーである原子力がその状況を緩和している。



出典: 「Energy Balance of OECD Countries (2001)」 「農林水産省平成14年食糧自給レポート」

日本の化石燃料の輸入相手国比率

石油は中東、石炭はオーストラリア、天然ガスはアジアから多くを輸入している。


日本の石油輸入相手国(2002年度)

出典: ENERGY BALANCES OF OECD COUNTRIES

日本における石油の中東依存度の推移

石油の中東依存度は上昇傾向にある。石油危機当時を超えている。

出典:エネルギー生産・無給統計年報 石油管料月報

新エネルギーの導入量の見通し

新エネルギーの発電シェアは大きくない。

- ·**レファレンスケース**····現行対策を維持したケース。
- ・現行対策推進ケース・・技術開発の加速化等の現行政策の補強・拡充したケース。
- ・追加対策ケース・・・・・熱分野を中心とした追加対策を講じたケース。

【単位:万k]]

	2002年度	2010年度		
	<u>2002年度</u>	レファレンスケース	現行対策推進ケース	追加対策ケース
太陽光発電	15.6	6 2	1 1 8	118
風力発電	18.9	3 2	1 3 4	1 3 4
廃棄物発電	1 5 2	208	5 5 2	5 5 2
バイオマス発電	22.6	22.6	3 4	3 4
その他 廃熱利用等	554.6	574.7	7 0 0	1,072
新エネルギー 総合計	7 6 4	<u>899</u>	1,538	<u>1,910</u>

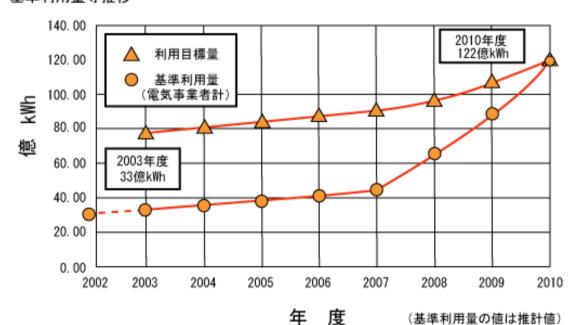
発電電力量シェア見通し(原子力関連の前提条件を主に考慮した見通し)

	2000年度	2030年度	
新エネルギー	0.2%	0.9%	

【出典:「2003年のエネルギー需給の展望」(案) 平成16年6月総合資源エネルギー庁調査会需給部会上にて公表されたもので、現在パブリックコメント中であり、同部会としての最終的な数値ではない。]

新エネルギーの課題

本格的な導入には、解決すべき課題も多い。


【出典:資源エネルギー庁ホームページ等】

	_
新エネの種類	導入状況
太陽光発電	導入量は過去3年間で約3倍。システム価格は過去9年間で約1/5まで低減した ものの、発電コストは依然高い。
風力発電	立地条件によっては一定の事業採算性も認められ、導入量は過去3年間で約6 倍。経済性、安定性が課題。
廃棄物発電	地方自治体が中心に導入が進展。立地問題等が課題。
パイオマス発電	木屑、バガス(さとうきびの絞りかす)、汚泥が中心。近年、食品廃棄物から得られるメタンの利用も見られるが、依然、経済性が課題。
太陽熱利用	近年導入量が減少。経済性が課題。
廃棄物熱利用 温度差エネルギー	・ 熱供給事業による導入事例はあるものの、導入量は低い水準。 -
バイオマス熱利用等	黒液廃材は新エネルギーの相当程度の割合を占める。
クリーンエネルギー 自動車	ハイブリッド自動車、天然ガス自動車が比較的順調に増加し、導入量は過去3年 間で約2倍。経済性、性能インフラ整備の面が課題。
天然ガス コージェネレーション	導入量は過去3年間で約1.4倍。高効率機器設備は、依然、経済性の面が課題。
燃料電池	リン酸形は減少。 固体高分子形は実用化普及に向けて内外企業の開発 争が本格化。 今後大規模な導入を期待。

電気事業者の義務(新エネ等電気利用法)

利用目標量に基準利用量は当面達しない(導入が遅れている)。

新エネ等電気利用法:電気事業者に一定量以上の新エネルギー等による電気の利用を義務づける法律 ・2002年1月施行)

基準利用量:電気事業者がその年の4月1日から翌年の3月31日までの一年間に利用すべき新エネルギー等電気の量利用目標量:経済産業大臣が4年ごとに、8年間分の目標を総合資源エネルギー調査会や関係大臣の意見を聴いて定めるもの

石油備蓄の状況(1/2) 日本における石油備蓄の現状

石油資源について、一時的供給途絶に対応すべく、石油備蓄を実施している。

平成16年6月末現在の我が国の石油備蓄は

国家備蓄 <u>90日分</u> 4,844万kl(製品換算) 原油 5,099万kl

民間備蓄 76日分 4,107万kl(製品換算) 製品 1,944万kl(47%) 原油 2,277万kl(53%)

合 計 166日分 8,951万kl(製品換算)

(注) 四捨五入のため内数と計は一致しないこともある

4

石油備蓄の状況(2/2) (参考)各国の石油備蓄の現状

欧州の石油備蓄量は少なく、日本はアメリカに次いで石油備蓄量が多い。

	フランス	ドイツ	日本	アメリカ
石油備蓄量(百万barrel)	175	259	619	1477
備蓄量/最終消費需要量	14%	14%	24%	13%
備蓄義務量	前12 ヶ月消費量の 約26%(95日分)	-	前12 ヶ 月生産量・ 輸入量の70日分	~10億パレル (目標値)

出典: "Energy Policies of IEA Countries 2003 Review" IEA "Oil Market Report"他

ウラン権益の確保状況

数年分の原子力発電に係る権益は確保済である。

日本法人が所有している海外権益は以下の通り。

国名	鉱山名	状況	推定埋蔵量	所有者	出資比率	数量
	 シガーレイク	計画中	142,000tU	出光カナダ	約 8%	約 11,000tU
	7 J - V17	可四十	142,00010	テプコリソース	5%	約 7,000tU
	ミットウエスト	計画中	13,800tU	OURD-CANADA	約 5%	約 700tU
	マクリーンレイク	操業中	16,000tU	OURD-CANADA	約 8%	約 1,300tU
カナダ	プリンセスメリー	探査中	30,700tU	日加ウラン	48%	約 15,000tU
	ドーンレイク	探査中	8,570tU	日加ウラン	約 20%	約 2,000tU
	クリスティーレイク	探査中	8,000tU	日加ウラン	100%	約 8,000tU
	ウォーリー他 10 権益	探査中	未定	日加ウラン	12 ~ 100%	未定
豪州	レンシ・ャー	操業中	63,600tU	日豪ウラン	約 11%	約 7,000tU
ニシ゚ェール	アクータ	操業中	46,000tU	OURD	引受比率 約 43%	約 20,000tU
合 計	•	· · · · · · · · · · · · · · · · · · ·				約 72,000tU

日加ウラン: 旧動燃がカナダに保有していたウラン権益の探査・開発を動燃に代わり実施すること を目的として、2000 年に設立された。伊藤忠商事、海外ウラン資源開発(OURD)、三菱商事、三菱マテリアルが各 25%を保有している。

合計値を扱う際は、推定埋蔵量の信頼性に差があることに留意が必要

環境制約としての地球温暖化問題 (1/3) 京都議定書

地球温暖化問題は、人類の生存基盤にかかわる最も重要な環境問題の1つ。 わが国は「機構変動枠組条約第3回締約国会議(COP3)において、温室効果ガスの排出量低減に約束を定めた京都議定書を採択した。

先進国の温室効果ガス排出削減量について、拘束力のある数値約束を各国毎に設定 国際的に協調して、約束を達成るための仕組みを導入(排出量取引、クリー開発メカニズム、 共同実施など)。

途上国に対しては、数値約束などの新たな義務は導入せず。

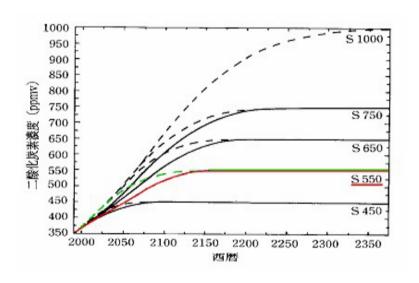
数值約束

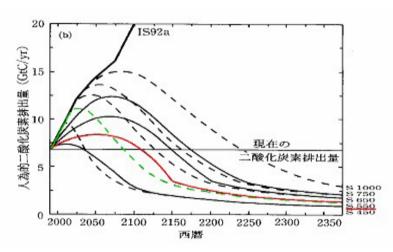
対象ガス: 二酸化炭素、メタン、一酸化二窒素、ハイドロフルオロカーボンHFC)、パーフル

オロカーボン(PFC)、六フッ化硫黄(SF₆)

吸 収 源: 森林等の吸収源による温室効果ガス吸収量を算入 基 準 年: 1990年 (HFC、PFC、SF。は、1995年としてもよい)

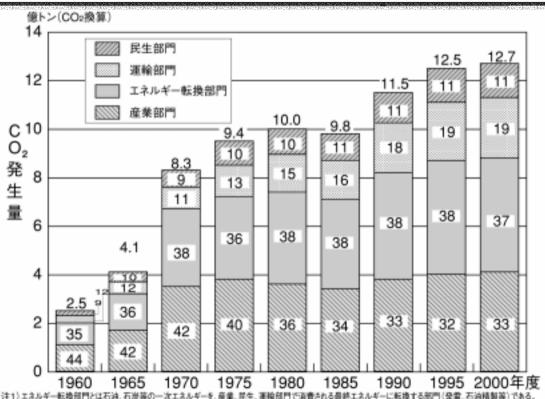
約束期間: 2008年から2012年


約 束: 各国毎の目標 日本6%削減、米国7%削減、EU8%削減


先進国全体で少なくとも5%削減を目指す。

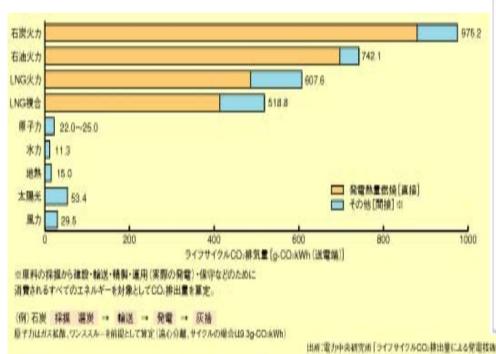
大気中のCO2濃度安定化に必要な排出量削減量

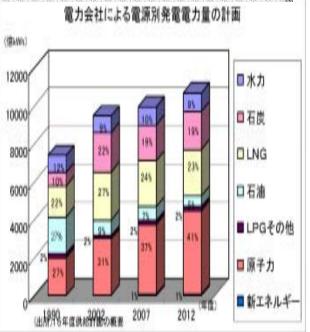
大気中のCO₂濃度を長期的に安定させるためには、京都議定書の目標(1990年を基準に数%削減)よりも大幅に厳しい排出量の削減が必要となる。



環境制約としての地球温暖化問題 (2/3) 日本の部門別CO₂発生量

発電を含むエネルギー転換部門は、日本のCO₂発生量のうち37%を占める。


注1)エネルギー転換部門とは石油、石炭等の一次エネルギーを、産業、民生、運輸部門で消費される最終エネルギーに転換する部門(発電、石油精製等)である。 注2)グラフ内の数値は構成比 出典:総合エネルギー統計(平成13年度版) 他


環境制約としての地球温暖化問題 (3/3)

各種電源別のCO。排出量と電源別発電電力量の実績及び見通し

非化石燃料による発電は、化石燃料による発電に比べてCO₂排出量は小さく、CO₂排出量低減効 果は大きい。

全発電量に対して非化石燃料による発電の占める割合は、計画では2012年において原子力が 41%、水力が9%、地熱及び新エネルギーの合計が1%。

出所1電力中央研究所「ライフサイクルDO:排出量による発電技術の評価(平成12年3月)」

まとめ(1/3)主要指標のまとめ

各国の主要指標は以下の通り。日本は欧米より原子力発電比率が高いが、エネルギー輸入依存度、石油中東依存度ともに高い。

	日本	アメリカ	EU
GDP(億ドル)	43300	92100	99700
エネルギー輸入依存度	79%	27%	50%
石油中東依存度	88%	23%	18%
原子力発電比率	32%	21%	34%

出典: "Energy Policies of IEA Countries 2003 Review"

[&]quot;ENERGY BALANCES OF OECD COUNTRIES"

まとめ(2/3)基礎データ分析

■ 地政学条件

■ 先進各国のうち、北米は豊かなエネルギー資源を有している。一方、欧州は資源インフラを整備し国際協調を進めている。

エネルギー需給関係

- 我が国も含め、先進各国はベストミックスを図っている。一方、長期的な需給については、中国等の経済発展に伴い、需給がより 逼迫する可能性がある。
- 我が国では、新エネルギーへの取り組み、石油備蓄等の対策が なされている。しかし長期的な需給においては、これらは限定さ れた部分しか担うことはできない。

■ 環境制約

エネルギーを考える上で、地球温暖化が避けることのできない問題となっており、その対策として、二酸化炭素排出量を抑制してくことが今後ますます重要になる。

まとめ(3/3)基礎データ分析

- 現行原子力長期計画においては、我が国の地 政学条件、長期のエネルギー需給、環境制約 (二酸化炭素問題)を踏まえ、電源のベストミック ス、基幹電源としての原子力を提示し、その上で、 エネルギーセキュリティの一層の向上させるもの として核燃料サイクルを位置づけている。
- 本資料で見てきた基礎データに鑑みれば、地政的条件、エネルギー需給、環境制約といった観点から、我が国では、引き続き、エネルギーセキュリティの確保に向けて取り組むことが重要である。