
資料第3号

ものづくりと産業競争力

2009年4月

東京大学大学院経済学研究科教授 東大ものづくり経営研究センター長 ハーバード大学上級研究員 藤本隆宏

組織能力とアーキテクチャの適合仮説ー全体の見取り図

産業レベルでの組織能力の偏在

急成長期の共通体験が、現場群(産業)における組織能力の偏在を生む

「不足の経済」(economy of scarcity) ・・ 若いころの貧乏暮らし

→ 企業内分業を抑制し(多能工化)企業間分業を促進し、企業内・企業間の協業(チームワーク)を促進する

生産資源の不足は、ある条件(能力構築能力の存在)の下で、 生産性の向上を、なかば強制する(高地トレーニング効果)

その後、生産資源が充足されれば、爆発的にアウトプットが成長する その後、アウトプットが過剰になれば、競争は促進される

以上は、意図せざる結果(怪我の功名、ひょうたんから駒)の色彩が強い

「ものづくり」とは「設計情報の良い流れ」を作ること

現場・現物からの発想・・・ モノよりはむしろ「設計」に着目

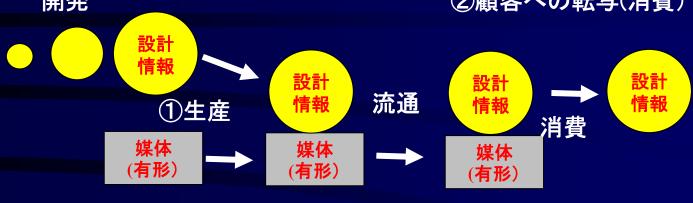
現物 = 設計情報+媒体

アリストテレス・・・ 現物=形相+質料 (形相が本質)

製品(物財・サービス)は、人工物(あらかじめ設計された何か)である。

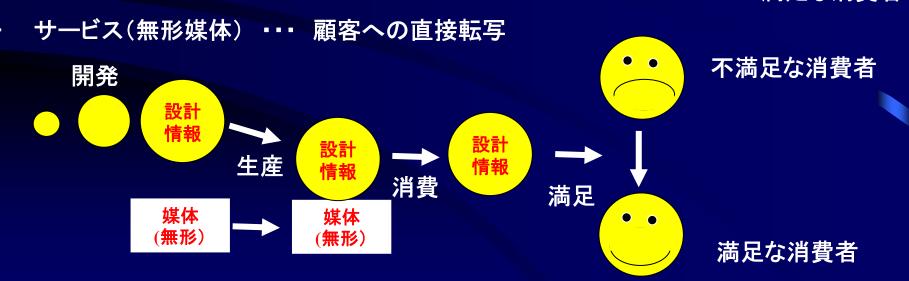
媒体が有形なら製造業(物財)

無形ならサービス業

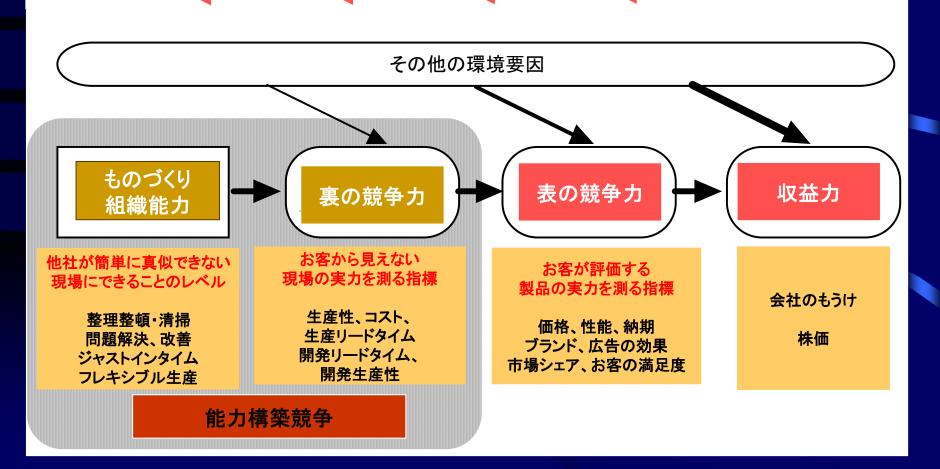

付加価値の主たる源泉は設計情報にある(媒体はそれを伝える器である)。

開かれた(広義の)ものづくり・・・ 人工物に託して、設計情報を創造し、 転写し、発信し、お客に至る流れを作り、顧客満足と経済成果を得ること。

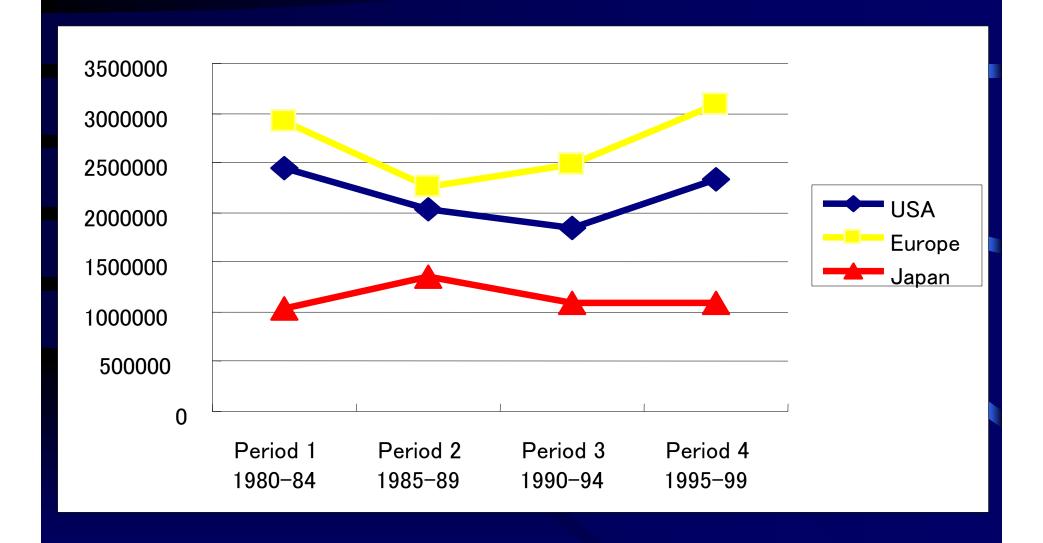
物財(有形媒体)とサービス(無形媒体)

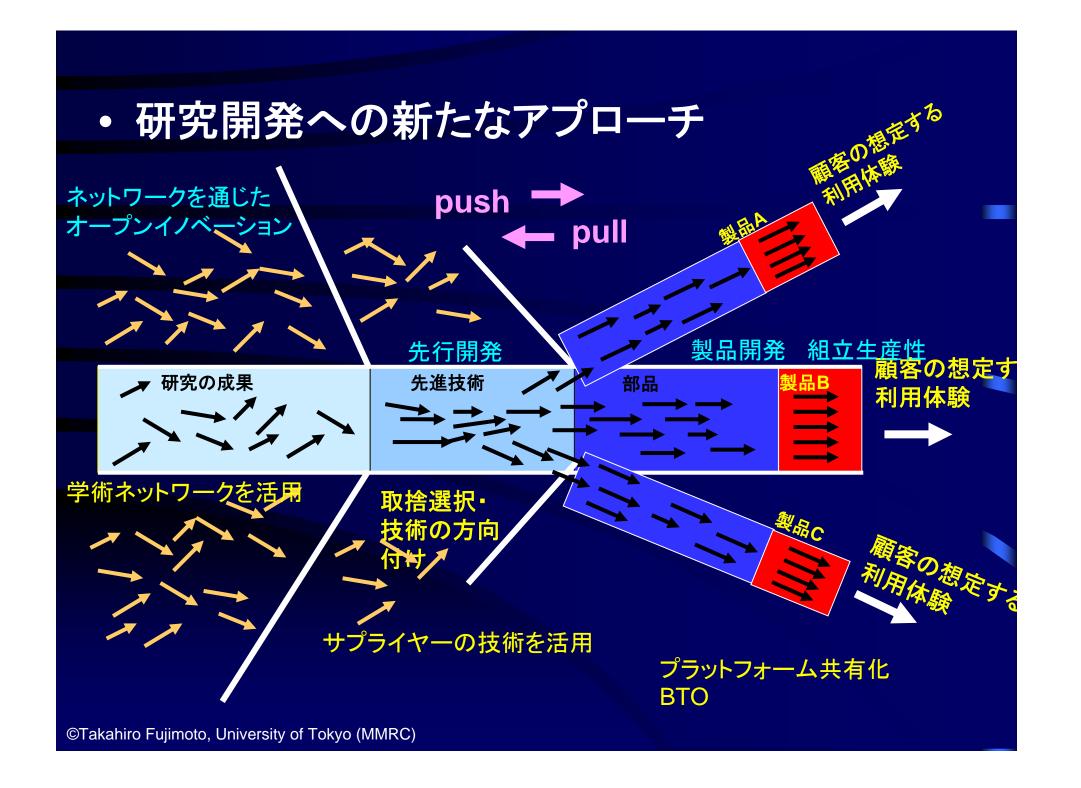

· 物財(有形媒体) ••• 2段階の間接転写: ①媒体への転写(生産) · 開発 ②顧客への転写(消費)

不満足な消費者生産)

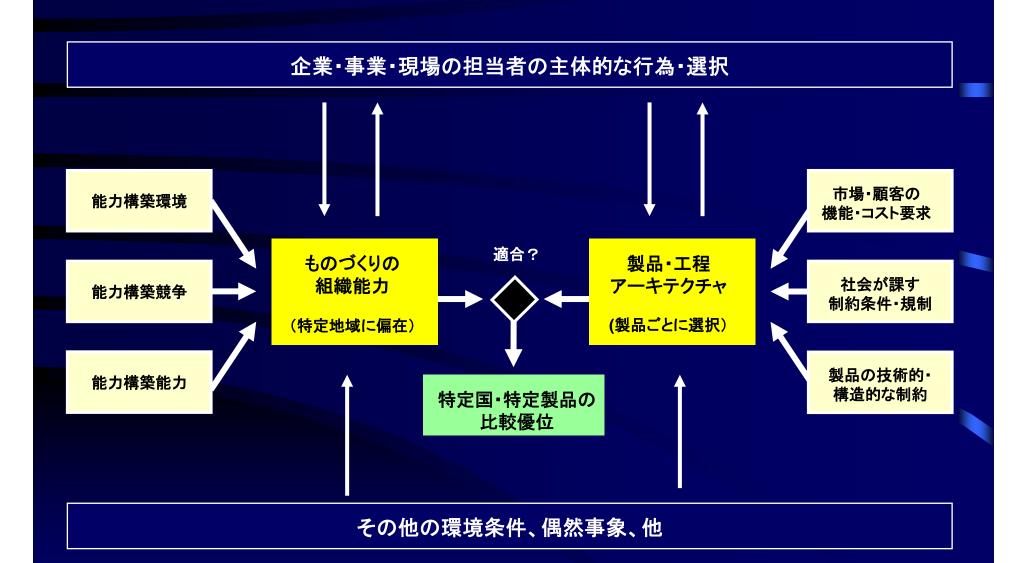

東京大学 藤本降宏

満足な消費者

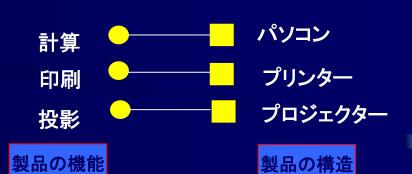



ものづくり組織能力、裏の競争力、能力構築競争

- ① まず能力構築から・・・「現場=体を鍛える」トヨタ流の体育会系戦略
 - ② まず利益構想から・・・「本社=頭を使う」欧米流(中国流)戦略



自動車の開発生産性:日本は欧米の2倍前後で推移



組織能力とアーキテクチャの適合仮説ー全体の見取り図

モジュラー(組み合わせ)型アーキテクチャと インテグラル(擦り合わせ)型アーキテクチャ

Modular Architecture モジュラー(組み合わせ)型

パソコンのシステム

Integral Architecture インテグラル(擦り合わせ)型 走行安定性サスペンション乗り心地ボディ燃費エンジン

乗用車

製品の機能

製品の構造

製品アーキテクチャの基本タイプ

モジュラー インテグラル (組み合わせ) (擦り合わせ) クローズド・インテグラル クローズド・モジュラー クローズド 乗用車、オートバイ メインフレーム、 (囲い込み) ゲームソフト、 工作機械、 軽薄短小家電、他 レゴ オープン・モジュラー オープン パソコン、同ソフト、 (業界標準) インターネット、 新金融商品、自転車、

擦り合わせ型(インテグラル)製品:小型乗用車

オープン・モジュラー型の製品(パソコンシステム)

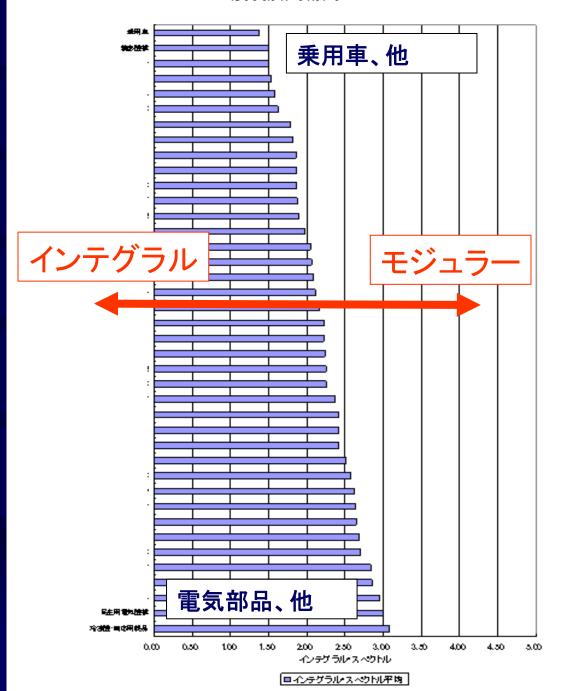
汎用部品(いろんな会社の製品で使える)は50%以上

自動車用外板の工程アーキテクチャ

Function	Surface Appear- ance	Corrosion Resist- ence	Dent Resist- ence	Form- ability	Weld ability	Paint ability	Dimen- sional Accuracy	Rigidity
FIOCESS	ance	CHCC	CHCC				recuracy	
Iron Making								
Converter	0	0	0	0	0			
Secondary refining	0	0	0	0	0			
Continuous casting	0			0				
Hot Rolling	0			0				
Pickling	0							
Cold Rolling	0		0	0			0	0
Continuous Annealing	0		0	0	0	0	0	
Continuous Galvannealing	0	0	0	0	0	0	0	

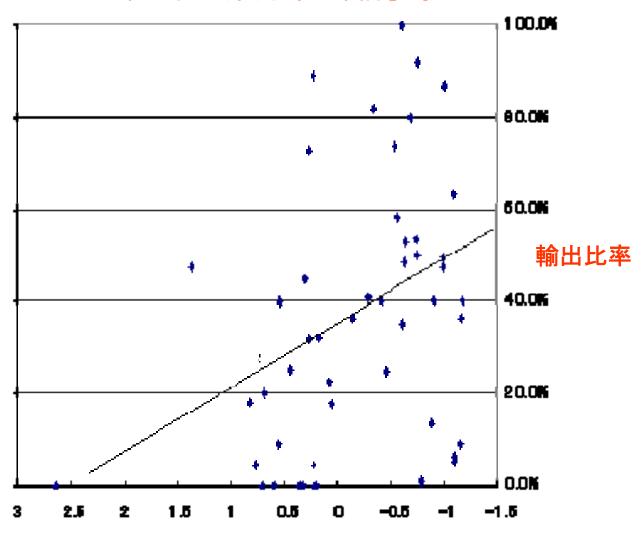
Integral Architecture Index = $0.48 = 33 \div (9X8)$

Relatively integral


自動車用内板の工程アーキテクチャ

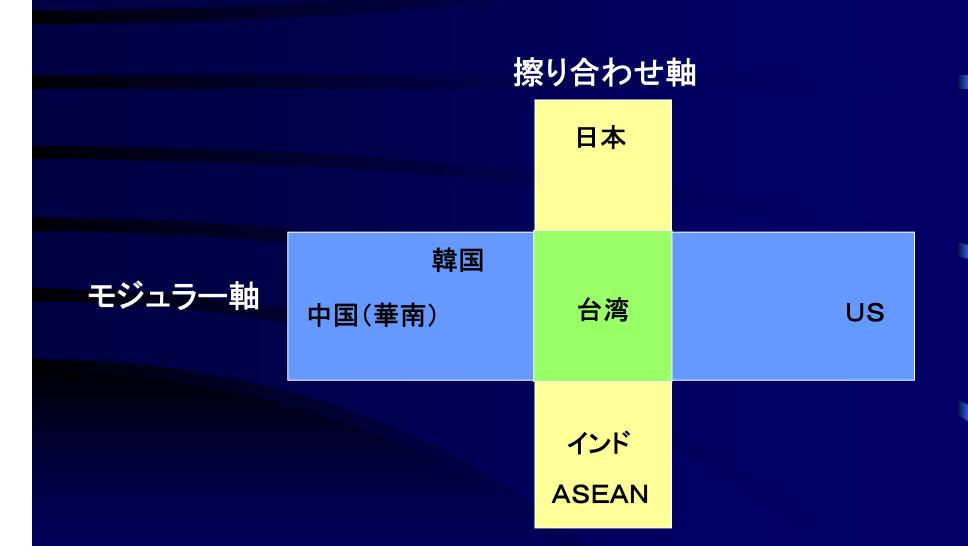
Function	Surface Appear- ance	Corrosion Resist- ence	Dent Resist- ence	Form- ability	Weld ability	Paint ability	Dimen- sional Accuracy	Rigidity
Iron Making								
Converter		0		0	0			
Secondary refining		0		0	0			
Continuous casting				0				
Hot Rolling				0				
Pickling					0			
Cold Rolling				0	0		0	0
Continuous Annealing				0			0	

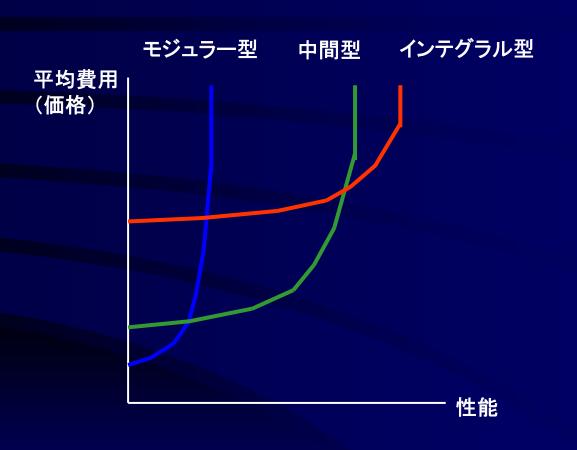
Integral Architecture Index = $0.23 = 15 \div (8X8)$


インテグラル スペクトル平均

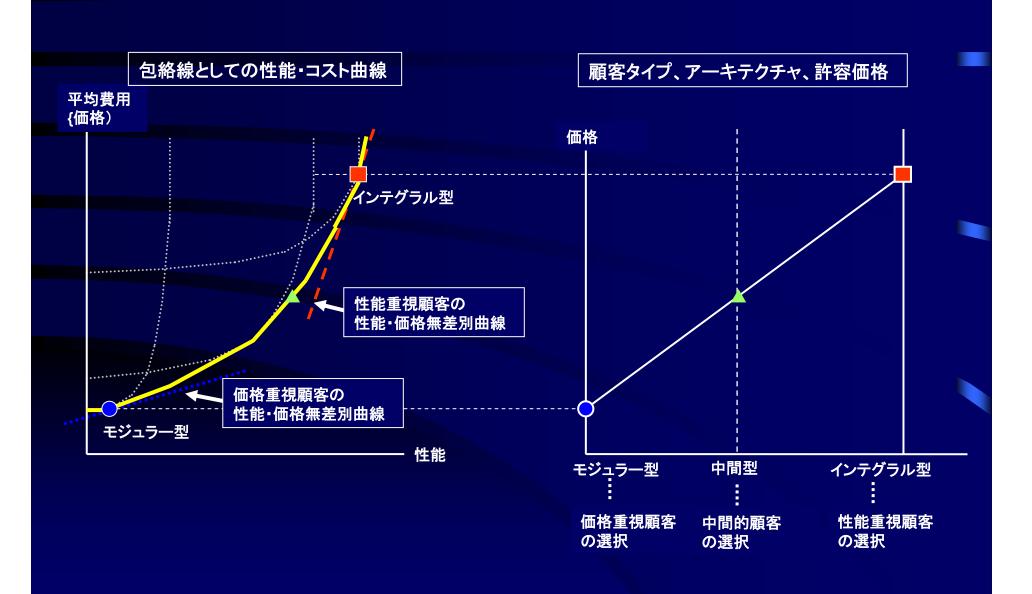
製品のインテグラル度・モジュラー度の測定

東京大学・経済産業省合同調査(2005)


日本企業は「擦り合わせ製品」で強い


東京大学 大鹿隆·藤本隆宏

インテグラル・アーキテクチャ度


環太平洋での競争優位:擦り合わせ軸とモジュラー軸

アーキテクチャと性能・コスト曲線

顧客タイプとアーキテクチャ選択の関係

アーキテクチャの位置取り(ポジショニング)戦略

顧客の製品・工程は?

インテグラル

モジュラー

インテグラル

自社の 製品・工程 は?

モジュラー

中インテグラル・ 外インテグラル

日本の自動車・2輪部品 自動車用樹脂 システムLSI コピー・プリンタ消耗品・・

中モジュラー 外インテグラル

デル(カスタマイズPC) デンソー(一部の部品) キーエンス(ソリューション) ダイキン(ソリューション)

中インテグラル・ 外モジュラー

インテル、シマノ(ギア) 信越化学(半導体シリコン) 村田製作所(コンデンサ) 超小型家電、プリンタ・・・

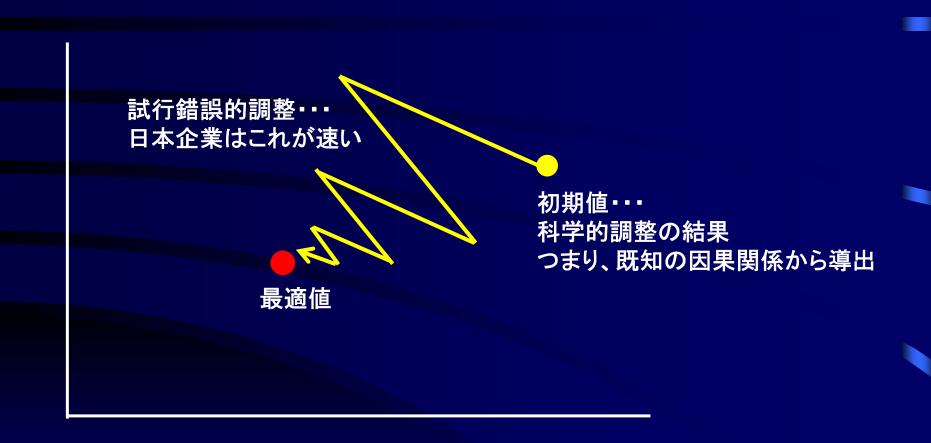
中モジュラー・外モジュラー

汎用樹脂、 汎用グレード鋼、 汎用液晶、DRAM・・・

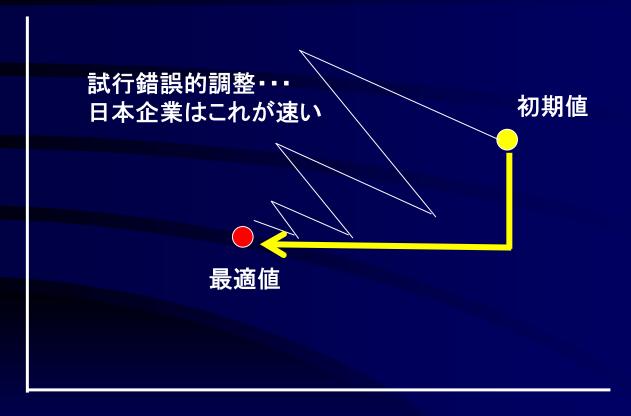
設計の「連立方程式」と2段階コーディネーション

• 限定合理性ゆえに、 式の一部(A')しか分かっていないとしよう。

・・・ まず、この不完全な方程式を解く

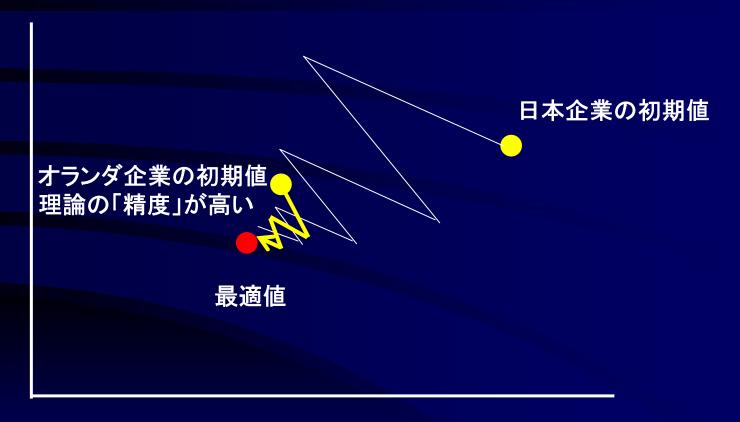

第1段階 (科学的調整)・・・ 試行錯誤の初期値

第2段階 (試行錯誤的調整)・・・ 試行錯誤で最適解に収斂する


- (1) 科学的調整の組織能力 ・・・ 事前に獲得した科学知識の割合 → 初期値の最適値からの距離
- (2) <mark>試行錯誤的調整の組織能力 ・・・ 多能設計者のチームワーク</mark>
 ______ → 調整のスピード

「試行錯誤的調整」における日本企業の優位性

モジュール化における米国企業の優位性


相互依存性の切断によるショートカット効果

- (1) 日本企業は事前の科学的知識が低く、事後的な試行錯誤に頼る
- (2) 米国企業は、モジュラー化(方程式の簡略化)でショートカット

「科学的調整」におけるオランダ企業の優位性

「ウサギと亀」現象

- (1) 製品の「擦り合わせ度」が極端に高い(複雑な連立方程式)
- (2) 日本企業は事前の科学的知識が低く、事後的な試行錯誤に頼る
- (3) オランダ企業は、事前に把握している変数や因果式が多い(科学的調整力)

シミュレーション結果の要約: 日本企業は「中程度の擦り合わせ」製品を コーデョネーションにより開発するのが得意?

モジュラー製品・・・試行錯誤の数が少ないので設計費の差が出ない

J企業の設計費用 A企業の設計費用 CO

中程度の擦り合わせ製品・・・試行錯誤の数が多いので設計費の差が出る

 J企業の設計費用

 A企業の設計費用

極端な擦り合わせ製品・・・科学的調整の巧拙で逆転が生じうる

「フロントランナー方式」の産業政策

「護送船団方式」(1番遅い企業の尻押し)の限界

むしろ「フロントランナー方式」:マラソンの先頭ランナーをもっと速く

- (1) フロントランナー企業の識別
- (2) 官としてフロントランナー企業の戦略を学習
- (3) フロントランナーが参画する形での産業政策作り
- (4) フロントランナーがもっと走るためには何が必要か?
- (5) チャレンジャーがそれについていくためには何が必要か?
- (6) ダイナミックな能力構築競争の維持政策
- (7) 劣後企業対策は以上の産業政策とは切り離して考える

例: 経済産業省・機能性化学品室と機能性化学産業研究会

今後の産業競争力強化における官の役割

- 日本の設計現場が得意とする製品の間接的な後押し。
- ・厳しい環境規制・エネルギー節約・安全規制
- それを世界に普及させる
- •市場要求と社会制約が厳しい「難しい設計」に勝機。
- 競争戦略に合わない不用意な標準化は逆効果

産業と官の関与:厳しい規制は可。過剰介入は不可

- ・自動車・・・ 結果として O (厳しい環境規制で先行・エコ技術で優位に)
- ・原子力設備 ・・・ (極めて厳しい安全規制で民が鍛えられた?)
- 携帯電話・・・ △ (日本の発達した顧客要求に世界が追随せず)
- 損害保険 ・・・ × (金融庁を向いた開発? 未払い問題で規制の悪循環)
- ・医療機器・・・ × (官の過剰規制で民が萎縮。輸出産業を逸失?)

適度にいじめられた産業は育つ。疾風に勁草。ただし、いじめすぎはダメ。

参考文献

製品開発の基本的「成功パターン」とは何か(自動車)

→ 藤本・クラーク『製品開発力』ダイヤモンド社

効果的製品開発手法の異なる産業間での比較(コンピュータ、医薬、他)

→ 藤本・安本共編著『成功する製品開発』有斐閣

ト3タ自動車の強さの真の源泉は何か?

→ 藤本『生産システムの進化論』有斐閣

製品アーキテクチャのコンセプトを戦略に活かすこと

→ 藤本・武石・青島編『ビジネス・アーキテクチャ』有斐閣

文系・理系の溝を埋めることをねらった生産管理・技術管理の教科書

→ 藤本『生産マネジメント入門(上)(下)』日本経済新聞社

自動車産業はなぜ強かったのかを問う同時代史 → 藤本『能力構築競争』中公新書

ものづくり現場発の戦略論の提案 → 藤本『日本のもの造り哲学』日本経済新聞社

対中国戦略へのアーキテクチャ論の応用

→ 藤本・新宅編著『中国製造業のアーキテクチャ分析』東洋経済新報社

サービス業にも広がる「開かれたものづくり」 → 藤本他『ものづくり経営学』光文社新書