長聴第15-1号

The Economics of Direct Disposal v. Reprocessing and Recycle

Steve Fetter School of Public Policy, University of Maryland

Matthew Bunn, John P. Holdren, Bob van der Zwaan Kennedy School of Government, Harvard University

Direct-disposal v. Reprocessing-Recycle

- Is it better to dispose of spent fuel directly in geologic repositories, or reprocess it to recover and recycle the plutonium and uranium?
- This question is receiving renewed attention, because of concerns about:
 - accumulations of spent fuel and separated plutonium
 - the capacity of geologic repositories
 - the long-term future of nuclear power
 - links between the civilian nuclear fuel cycle and the proliferation of nuclear weapons

Our Study Focused on Costs

- Cost is an important element in this debate
 - not the only (or most important) factor; environmental, security, and wastemanagement concerns also important
- General agreement that reprocessing-recycle is more expensive than direct-disposal today
- Advocates argue that difference is small, will disappear soon if nuclear power grows
- We conclude that cost difference is significant and is likely to persist for 75-100 years

Outline

- 1. Direct-disposal v. reprocessing-recycle in LWRs
 - breakeven uranium price
 - difference in cost of electricity
 - sensitivity analysis
- 2. Direct disposal in LWRs v. recycle in FBRs
- 3. Uranium resources and prices
 - when will uranium price reach the breakeven price for reprocessing-recycle?
- 4. Impact of reprocessing-recycle on repository requirements

For central values of the price of fuel-cycle services and other parameters, we calculate

- the uranium price for which the cost of electricity would be the same for both options (the "breakeven price")
- breakeven prices for other fuel-cycle services (e.g., reprocessing)
- the difference in the cost of electricity (COE), for a given uranium price

Breakeven Prices

assuming central values of other parameters

Parameter	Break- even	best	central	worst
Uranium (\$/kg)	370		50	
Reprocessing (\$/kg)	420	500	1000	2000
MOX fabrication (\$/kg)	<0	700	1500	2300
Interim fuel storage	780	300	200	100
Disposal cost difference	630	300	200	100
Enrichment (\$/SWU)	1200	150	100	50

Breakeven U Price v. Reprocessing Price

COE Premium for Reprocessing-Recycle

These estimates are <u>favorable</u> to reprocessing

- Central values of reprocessing and MOX fuel fabrication are well below recent prices
- No charge included for Pu storage, Am removal, licensing or security for MOX use
- Expensive interim storage included for directdisposal
- Disposal cost savings for HLW higher than other estimates
- Equal disposal costs for spent MOX and LEU

Breakeven Prices

assuming regulated utility ownership

Parameter	Break- even	best	central	worst
Uranium (\$/kg)	340		50	
Capital Cost Difference	-95	0	200	400
Reprocessing (\$/kg)	<0	500	1000	2000
Interim fuel storage	4100	300	200	100
Disposal cost difference	3400	300	200	100
Enrichment (\$/SWU)	570	150	100	50

COE Premium for FBR

Uranium Resources

- Breakeven U prices using central values: \$340/kg (FBR)
 \$370/kg (LWR)
- Breakeven U price > \$130/kg even in best case
- How much is available? Red Book gives 16 Mt available at \$130/kg or less, but...
 - high-cost resources in many countries (e.g., Australia) not estimated;
 - unconventional resources (e.g., phosphates) not included;
 - little investment in exploration

A Very Rough Estimate of Ultimately Recoverable Uranium Resources

- Red Book give 2.1 Mt at \$40/kg (~current price)
- Hore-Lacy: "a doubling of price from present levels could be expected to create a tenfold increase in measured resources."
- So there should be 21 Mt available at \$80/kg and 210 Mt at \$160/kg

$$R = 2.1 \left(\frac{p}{40}\right)^{\epsilon}$$

 ϵ = long-term price elasticity of supply

Deffeyes and MacGregor (1980)

On average, a 10-fold decrease in ore grade is associated with a 300fold increase in available resource

Recoverable Resources

	Long- term elasticity	Long- term elasticity MtU recoverable at price less than		
Source	of supply E	\$40	\$80	\$130
UIC (doubling price creates ten-fold increase in measured resources)	3.32	2.1	21	105
Deffeyes and MacGregor (ten-fold decrease in concentration = 300-fold increase in resource, p ~ c)	2.48	2.1	12	39
Gen-IV (based on U.S. reserves for various mining methods)	2.35	2.1	11	34
Red Book		2.1	11	16

IIASA/WEC Global Energy Perspectives Nuclear Electricity Production Scenarios

Cumulative Uranium Consumption LWRs with Direct Disposal (19 tU/TWh)

Other Considerations

- Repository space
- Energy security
- Nonproliferation
- Public and environmental health

Repository Space

- Can reprocessing substantially reduce need for new repositories?
- Recycle in LWRs: no
 - buildup of minor actinides increases decay heat per kWh
- Recycle in FRs with minor actinides : yes, but...
 - reprocessing, fabrication more expensive
 - Gen-IV: \$2000/kg reprocessing, \$2600/kg core fuel

• if
$$C_U = \frac{130}{\text{kg}}$$
:

 $\Delta COE = 6 \text{ mill/kWh if } \Delta C_{cap} = \0

16 mill/kWh if $\Delta C_{cap} =$ \$200/kW_e

Repository Space

- Repository space is scarce because of political barriers to new repositories, but
 - most countries can greatly expand repository capacity without new site (but not US)
 - some countries may accept foreign waste, given very high willingness to pay for service
 - political barriers to separation and transmutation are unlikely to be smaller than barriers to new repositories, especially given much greater near-term risks

Energy Security

- Large number of uranium suppliers ensures an open and competitive world market
 - Canada, US, Australia, Russia, Kazakhstan, Uzbekistan, South Africa...
- Establishing a "strategic uranium reserve" would cost less than reprocessing
 - 1 mill/kWh sufficient to fund a 20-year supply of uranium

Nonproliferation

- Once-through fuel cycle is generally regarded as being the most proliferation-resistant
 - Pu in spent fuel can be recovered only by reprocessing; radiation provides selfprotection for hundreds of years
 - Enrichment plants relatively easy to safeguard
- Recycle fuel cycles pose larger risks:
 - Theft of separated Pu in storage, fresh MOX
 - Reprocessing plants difficult to safeguard
 - Risks associated with enrichment, spent fuel avoided only with FBRs and full MA recycle

Public and Environmental Health

- Except for accidents, radiation doses to public are very low for both fuel cycles
- Reprocessing and recycling does not significantly reduce the risks from waste disposal
 - risks usually dominated by long-lived, watersoluble fission products (Tc-99, I-129)
- Reprocessing and recycling reduces risks from uranium mining, but increases risks from accidents (at reactors and reprocessing plants)