資料第9-1号

MA含有炉心の炉物理実験の 必要性について

平成21年3月30日

日本原子力研究開発機構

内容

• 炉物理実験の意義

- マイナーアクチノイド(MA)を添加した高速炉の模擬実験
- 加速器駆動システム(ADS)の物理実験における京都大学での 実験の位置づけ
- MA核変換システムの炉物理実験の今後の進め方

マイナーアクチノイド核データの現状

▶実験データの取得を進めるとともに、理論計算や炉物理実験を組み合わせて、核データ 精度を高めることで、核変換システムの設計余裕の合理化が期待できる。

核データ(微分データ)と 炉物理実験(積分データ)の意義

<u>核変換技術の研究開発における炉物理実験の意義</u>

 ・<u>MA核種を用いる核変換システムでは、</u>積分テストによる核設計精度把握で、設計余裕を合理化。
 ・ADSについては、<u>核破砕中性子源が新たに加わる</u>ため、高エネルギー領域まで包含した積分テストが必要。
 ・計算技術の発展で「全炉心模擬」の必要性は低くなってきたが、「部分模擬」、「組成模擬」による検証は依然重要。

FCAが果たしてきた役割と今後の活用方策

FCA (Fast Critical Assembly)

我が国唯一の高速炉臨界実験装置 初臨界:1967年4月29日

<u>特長</u>

・板状燃料の利用による柔軟性
 炉心組成:様々な高速炉組成を模擬可能
 中性子スペクトル:低減速軽水炉~高速炉
 ・高い測定技術
 反応率比(核分裂計数管、箔)
 反応度価値(試料、ドップラー効果)

<u>果たしてきた役割</u>

- ・国の高速炉開発(常陽、もんじゅ模擬実験)
- ・高速炉安全性評価に関わる基盤データ取得
 (Naボイド反応度、U-238ドップラー効果)
- ·新型炉開発(軸非均質炉、高転換軽水炉他)
- ・断面積評価のための積分実験
 (MA核種、 eff国際ベンチマーク実験)
- ・実習生、外来研究員の受け入れ等による人材育成

今後の活用方策

- ・多様な中性子スペクトル場
- 少量試料を利用した断面積評価用データの取得 ・様々な炉心組成
 - ・U、Puで構成される中性子場における断面積評価用 データの取得
 - ・新概念炉等(MAを使用しない)の特性検証
 - ・新たな炉物理測定技術の開発(未臨界度モニター等)

<u>FCAの限界(設置許可)</u>

 ・燃料の制約…U、Pulc限定 (MA燃料の装荷は少量でも不可)
 ・試料の制約…反応度価値用試料の種類と量 (最大反応度:\$0.6(~数10g))

 核変換研究への利用には限度がある (設置許可変更に伴う大幅な安全審査のやり直しが必要)

高速炉臨界実験装置の世界の現状

マイナーアクチノイド添加炉心の炉物理特性

冷却材ボイド効果: 炉心で冷却材がボイド化すると、中性子の平均エネルギーが高くなり、核分裂の連鎖反応が活発になるため、出力が上昇する。(正の反応度効果) 一方、ボイドを通して中性子が炉心から逃げやすくなる効果もあり、これは出力を下げる方向。(負の反応度効果) 冷却材ボイド効果は、これら正の効果と負の効果の相殺で正味の効果が決まる。

<u>ドップラー効果</u>: 燃料に含まれるU-238等による中性子捕獲反応が温度上昇で大きくなる現象。数十keV程度以下の共鳴エネルギー領域での中 性子捕獲反応が効く。(負の反応度効果)

<u>
遅発中性子割合</u>: 核分裂で発生する平均中性子数のうちの遅発中性子の占める割合。この割合が大きいほど原子炉の急激な出力の変化を防 、
、
ための制御を行う時間的余裕が大きくなる。

高速炉における冷却材ボイド効果とドップラー効果の重要性

・ (例)ULOF* (Unprotected Loss of Flow、流量喪失時スクラム失敗事象)起因過程

*外部電源喪失等により1次冷却系ポンプの停止などの過渡事象が発生した際に、原子炉停止系の作動に失敗することを重ね合わせた事故事象。高速炉では、 一般に独立2系統の原子炉停止系が装備されるため、このような事象が発生する確率は10⁻⁶/炉・年以下であり、技術的には発生するとは考えられない事象。

高速増殖炉の安全性に対するMA混入の影響

◆ MA含有率と反応度係数の関係

高速増殖炉の安全に関するパラメータの設計余裕について

- もんじゅにおける設計余裕^{*1}
 冷却材ボイド反応度
 - 建設時: **50%**
 - 設計変更時: 30%
 - ドップラー反応度:30%
- ・大型FBRにおける目標精度として暫定的に 提案されている目安値^{*2}

冷却材ボイド反応度:20%(2) ドップラー反応度: 14%(2)

- ▶もんじゅの冷却材ボイド反応度に対する設 計余裕は、MOZART実験解析等による核 設計手法進展の結果^{*1}を踏まえ、50%から 30%へ変更している^{*4}。
- ▶ 設計余裕を合理的なものにしていくには、 炉物理実験と解析手法の高度化により、 設計精度を向上していく努力が重要。
- *1: 原子力安全委員会 資料第111A-2-1号、2007.
- *2: M. Ishikawa, "Application of Covariances to Fast Reactor Core Analysis", Nuclear Data Sheets 109 2778-2784, (2008).
- *3:「高速増殖炉サイクルの実用化戦略調査研究 フェーズII技術検討書 (1) 原子炉プラントシステム」、JAEA Research 2006-042, (2006).
- *4: 原子力安全委員会 資料第111-2-4号、2007.

- 注1: 誤差バーは設計余裕を示す
- 注2: もんじゅ建設時および設置変更時の値は資料*4により、ULOF解析時の/ミ ナル値。ボイド反応度は正値の合計。
- 注3: 設置変更時のデータはAm蓄積(約1%)を考慮したもの
- 注4:大型MOX炉心は資料*3における高内部転換型炉心
- 注5: 平衡はMA約1%を含む。MA5%は、資料*3の表2.1.3-21より軽水炉由来の 代表組成 より

核変換物理実験施設におけるマイナーアクチノイド(MA)実験

FCAの持つ柔軟性・測定技術・燃料を引き継ぎ、かつ、MAを含む高発熱ピン型燃料を用いた実験を新たに可能にするため、遮蔽、冷却、遠隔操作の機能を整備

表 燃料組成と崩壊熱及び放射線強度					
		装荷体積: 28cm × 28cm × 60cm			
	PU, IMAOD船成	発熱 (W)	線(1/s)	中性子線(1/s)	
MOX-FBR	UO2使用済燃料より	7.1 × 10 ²	3.1 × 10 ¹³	7.5 × 10 ⁶	
MOX-FBR 5%MA添加	UO2使用済燃料より	1.1 × 10 ³	3.2 × 10 ¹⁴	7.1 × 10 ⁶	
	MOX使用済燃料より	1.5 × 10 ³	5.3 × 10 ¹⁴	9.5 × 10 ⁶	
(MA+Pu+Zr) 窒化物	UO2使用済燃料より	1.6 × 10 ³	8.3 × 10 ¹⁴	3.4 × 10 ⁶	
	MOX使用済燃料より	2.6 × 10 ³	1.5 × 10 ¹⁵	4.5 × 10 ⁶	
		1.3 × 10 ⁴	1.3 × 10 ¹⁵	1.5 × 10 ¹⁰	

ADSの物理

京大 KART&LAB実験の概要

KART & LAB: Kumatori Accelerator-Driven Reactor Test Facility & Innovation Research Laboratory

- 固定磁場強集束型(FFAG)加速器を新設。陽子を150MeVまで加速。(現状では100MeV)
- ・臨界集合体KUCAの固体減速架台(A架台)の炉外にターゲットを設置。中性子を発生。
- 将来計画として1GeV加速器を増強し、科学研究・医学応用への発展を想定。電力供給・核変換等はさらなる応用分野として位置付け。

核破砕中性子源の特性(1) エネルギー分布

核破砕中性子源の特性(2) 空間分布 と 角度分布

主なADS実験プログラム

	加速器	外部中性子源	スペクトル	炉心	状況
MUSE (仏)	GENEPI (D⁺) 250keV, < 5kHz, < 50mA	Tターゲット 14MeV中性子	高速中性子	臨界実験装置 < 1 kW	実験終了
KART&LAB (京大)	FFAG (陽子) 150MeV, 100Hz, 1nA	Wターゲット 核破砕・炉外設置 (14MeV中性子源併設)	熱中性子	臨界実験装置	稼働中
GUINEVERE (ペルギー)	GENEPI (D⁺) 250keV, < 5kHz, < 50mA	Tターゲット 14MeV中性子	高速中性子	臨界実験装置	工事中
核変換物理 実験施設 (JAEA)	LINAC (陽子) 600MeV, 25Hz, 2 µ A	Pb, W (固体) 核破砕, 10 W	高速中性子	臨界実験装置 <1 kW	計画中
XT-ADS (EUROTRANS)	LINAC (陽子) 1GeV, 数mA	液体Pb-Bi 数MW	高速中性子	約100 MW	設計段階
ADS 実験炉 (JAEA)	LINAC (陽子) 1GeV, 2mA	液体Pb-Bi 2MW	高速中性子	80 MW	設計段階

・ TEF-Pは、出力規模を除く各項目での模擬性が高い点が特徴

京大KUCA と 核変換物理実験施設の相違:

Neutron spectrum [arbitrary unit]

・ 典型的な中性子スペクトル

KUCA: 熱中性子 核変換物理実験施設(TEF-P): 高速中性子

- ◆ 但し、両者とも、冷却材・減速材の模擬物質を工夫することで、柔軟に中性子スペクトルを調整可能
- Am-241の断面積との比較

熱中性子が多いKUCAでは、捕獲反応が支配し核分 裂反応は少ない

本来の核変換用ADSの中性子スペクトルを形成可能 な核変換物理実験施設では、捕獲反応と核分裂反応 が競合

主な実験項目と施設の適用性

		FCA	京大 KART&LAB	核変換物理 実験施設	MUSE GUINEVERE
核変換炉	Pu含有燃料(MOX,金属,窒化物)		-		-
	高速中性子体系でのMA核変換率及 びMA反応度価値	:gオーダー	:gオーダー、 熱中性子体系		-
	LLFP核変換率	-		:減速材付	-
	MA燃料領域模擬	-	-		-
ADS	未臨界炉物理·未臨界度計測				
	実効中性子源強度	-	:炉外ターゲット・ Ep<150 MeV		:D-T源
	加速器による運転制御	-			
	核破砕反応による中性子源	-	:エネルギー不足		-
	エネルギー増倍率測定	-	∷炉外ターゲット En<150MeV		-
	Pb-Bi冷却模擬		-		(GUINEVERE)
Th装荷炉心		-			-

- ・京大KART&LABに期待される実験は、未臨界度計測、150MeV以下の中性子の挙動等に関 する基礎データの取得
- ・核破砕中性子源の特徴に関るデータ(中性子源実効度等)の取得には核変換物理実験施設 での実験が必要

ADSの実現へ向けた 京大KART&LAB実験 の役割

MA核変換システムの炉物理実験の今後の進め方

□ 「高速中性子体系でのMA核データの検証」は、FBRとADSの研究開発を共通的に支える基礎基盤研究

- FBRでは、反応度係数の実験が特に重要であり、これにより設計余裕の合理化が期待できる。また、MA だけでなく、高次Pu含有炉心や、高燃焼度炉心の模擬の可能性も検討すべき。
- □ ADSでは、MA濃度の高い体系で、核破砕中性子源との結合に関するデータ取得が必要。

▶FBRとADSの両者を支える幅広いデータ取得に柔軟に対応可能な炉物理実験施設の整備を進めるべき ▶核変換システムの炉物理実験では、MAを大量(10kg程度以上)に使用することが要求されるが、その安 全審査への対応の検討が必要

▶MA燃料の用意(原料調達、加工)のための国際的な枠組みの検討が必要

- MAの添加率が5%程度までであっても、MA核データの精度向上は、将来のFBR開 発を支え、設計余裕の合理化が期待できる重要な研究課題である。微分測定・照 射試験・臨界実験・感度解析・炉定数調整等を組み合わせて、MA断面積の検証と 高精度化を図ることが重要。
- 陽子加速器 未臨界集合体 結合実験は、<u>京大での実験だけで、ADSの実用化</u> <u>を目指すのは困難</u>。 国際的にも、同種の実験は未実施。 原子力機構と京大が 連携して効率的かつ着実に研究開発を進めることが重要。
- 조軟性·発展性に富む臨界実験装置の整備は、今後の高速炉開発の基盤を固めるだけでなく、人材育成の観点でも極めて有益。

補足資料

代表的なアクチノイドの断面積

23

OECD/NEA ADSベンチマークでのADS設計に対する核データの影響

未臨界炉心の出力と外部中性子源の関係(計算体系)

 IAEA ADSベンチマークにおけるJAEAからの課題として出した、800MW熱出力ADS炉心*1をベース LBE冷却。LBEターゲット (Pu+MA)窒化物燃料

外部源の条件

<u>陽子ビーム</u>:z=150cm位置に、半径20cmのフラットビ ームを入射。エネルギーは150,600MeV,1.5GeV <u>中性子源</u>:z=100cm位置に、DT中性子源およびCf-252線源。どちらも等方。

• 計算条件

使用コード:MCNPX 2.6d 核データライブラリ:JENDL-3.3(20MeV以上につい てJENDL/HE-2007を適用できるものは適用)

*1: K.Tsujimoto, et.al, "Neutronics Desing for Lead-Bismuth Cooled Accelerator-Driven System for Transmutation of Minor Actinide", *Journal of Nucl. Sci. Tech.* Vol. **41**(1), pp.21-36 (2004).

マイナーアクチノイド·ベクトルの予測精度(LWR)

◆ PWR-UO₂燃料の照射後試験解析

核データライブラリ間の比較

status of integral test (to be published))

JENDLアクチノイドファイルにより精度が大幅に改善された核種²⁴¹Am、²⁴³Cm、²⁴⁴Cm、²⁴⁵Cm 計算値と実験値との差が大きい核種:²⁴²Cm、²⁴⁶Cm 等

照射後試験データの拡充、MA含有炉心の炉物理実験の拡充が重要

核破砕中性子源の特性

- ビーム出力当たりの中性子収量は1GeV強で極大値を示す
 - エネルギー当たりの発生粒子数(増加)とビーム出力当たりの電流(陽子数・減少)がバランスする
- 陽子当たりの発生中性子数の解析値は核内カスケードモデルで導出:モデルの適用性が重要
 - 低エネルギー粒子の入射や軽核標的との反応で、原子核の表面効果が十分考慮できず、カスケードモデルの妥当性の評価は困難
 - 150MeVまでは核データを使って解析 LA150ライブラリの思想

高速増殖炉の安全に関するパラメータの計算条件

対象		もんじゅ建設時	設置変更時	FS	FS+MA5%
MA含有率		-	約1%	約1%	約5%
炉心 設計値	冷却材ボイド 反応度[\$]			5.3 ^{*3}	6.0 ^{*3}
	ドップラー係数 [10 ⁻³ Tdk/dT]	- (5.7 ~ 7.6) /-4.0 ^{*1,4}	- (4.4 ~ 7.6) /-3.1 ^{*1,4}	-5.7 ^{*3}	-4.2 ^{*3}
	対象炉心			大型MOX燃料 高内部転換型 炉心。高速炉 多重リサイクル TRU組成	同左炉心。代表的TRU組成 : 110 年貯蔵ブルサーマル使用済み燃料、90 年貯蔵LWR使用済ウラン燃料 及び 40年貯蔵ALWR使用済ウラン燃料から 回収したTRUを0.5:1.9:7.6で混合。
ULOF 解析値	冷却材ボイド 反応度[\$]	3.2 ^{*2}	4.9 ^{*2}	-	-
	ドップラー係数 [10 ⁻³ Tdk/dT]		-6.9/-5.5 ^{*2, 5}	-	-
	備考		低燃焼度平衡炉心末期。ULOF 解析においては、ボイド反応度 に対してノミナルの正値x1.3、負 値x0.7。ドップラー反応度に対し てノミナルx0.7として計算		

*1: 原子力安全委員会 資料第111A-2-1号、2007.

*2: 原子力安全委員会 資料第111-2-4号、2007. 正値の合計。

*3:「高速増殖炉サイクルの実用化戦略調査研究 フェーズII技術検討書 (1) 原子炉プラントシステム」、JAEA Research 2006-042, (2006).

*4: 添八設計値 / 添十安全評価解析条件

*5: 非ボイド時 / ボイド時