

資料第7-1-1号

加速器駆動核変換システム(ADS)における 要素技術としての 大強度陽子加速器の現状について

平成21年2月5日

日本原子力研究開発機構

ADS用陽子加速器に求められる仕様と選択肢

サイクロトロン

- ・スイスPSIのSINQ加速器は590MeV/1.4MW(CW)で供用運転中。
 ・大型のサイクロトロンでも最大ビームパワーは2MW程度が限界。
 FFAG
- ・新しい加速器で、小型、高効率が期待されるが、発展途上。
- ・最大ビームパワーは10MW以下。

超伝導陽子リニアック

- ・高効率のCW運転に対応可能で、電子加速器では実績有。
- ・パルスマシンであるが、米国SNS加速器で超伝導陽子リニアックが稼働中。
- ・ADS用加速器としては最も有望であることは世界的な共通認識。

加速器技術の現状(イオン源)

SILHI source on IPHI Project (CEA) R.Gobin EPAC2002

Parameters	Déc. 97	Mai 99	Oct. 99	March 01	June 01
Energy (keV)	80	95	95	95	95
Intensity (mA)	100	75	75	118	114
Duration (h)	103	106	104	336	162
Beam off number	53	24	1	53	7
MTBF (h)	1.75	4	n. appl.	≈ 6	23.1
MTTR (mn)	6	5.3	2.5	≈ 18	2.5
Uninterrupted beam (h)	17	27.5	103	25	36
Availability (%)	94.5	97.9	99.96	95.2	99.8

IPHI: Injecteur de Protons Haute Intensité

加速器技術の現状(RFQ)

LEDA (Low Energy Demonstration Accelerator) (LANL) H.V.Smith et al., LINAC2000 6.7 MeV-100 mA CWの加速に成功

LEDA Source				
Proton beam curren 110mA				
Total beam current	130mA			
Beam emittance	0.2π mmmrad			
Operating voltage	75kV			

LEDAの構成

LEDA RFQ			
Beam current	100mA(95%)		
Beam emittance	0.22π mm.mrad		
	$0.17\pi degMeV$		
Final energy	6.7MeV		
Length	8m(4sections)		
RF power	670kW(beam)		
	1.2MW(structure)		
Peak field 1.8Kilpatric			

ビーム電流:CWで100mAクラス達成。					
出力制御	1:パルス運転未実施だが、本質的				
	な問題はない。				
信頼性	:運転情報なし。				

加速器技術の現状(J-PARC Linac, KEK/JAEA)

2009年12月より供用運転開始。 常伝導リニアック181MeVで後段のRCSにビーム供給。

LINAC Parameters

Parameter	Value	Unit
lon species	H-	
Output energy	400	MeV
Injection energy to ring (3 GeV RCS)	400	MeV
Peak current at injection *1	50	mA
Macropulse duration	500	µ sec
Repetition *2	50	Hz
Ring injection cycle	25	Hz
Ring injection pulse length	455	nsec
Ring injection kicker gap	358	nsec
Ring filling fraction *3	56	%
Beam duty factor after chopping	1.4	%
Average beam current after chopping	700	μA
Transverse emittance at ring injection *4	< 4	π mm· mrad
Momentum spread at ring injection	< ± 0.1	%
Total length *5	248	m
Beam floor distance *6	1.57 1.2	m

400MeVリニアック(現在180MeV, 将来600MeV超伝導リニアックの計画あり) 3GeV RCS 多目的/中性子源:1MW

加速器技術の現状(J-PARC Linac, KEK/JAEA)

DTL/SDTL部(3~181MeV)はRFデューティ1.5%で運転中。RFQの高デューティ化に課題

加速器の信頼性(J-PARC Linac)

(M. Ikegami, ICFA-HB2008, K. Hasegawa, LINAC2008より引用)

1分以内のフォールトのほとんど は自動復帰により10秒程度での ビーム復帰

加速器技術の現状(SNS Linac, ORNL)

パルス中性子源用として運転中。Stuart Henderson, ORNL EPAC 2008

	Design	Operation
	Design	operation
Kinetic Energy	1.0 GeV	0.88 GeV
Beam Power	1.44 MW	0.52 MW
Linac Beam Duty Factor	6%	3%
Modulator/RF Duty Factor	8%	4%
Peak Linac Current	38 mA	32 mA
Average Linac Current	1.6 mA	0.57 mA
Linac pulse length	1.0 msec	0.5 msec
Repetition Rate	60 Hz	60 Hz
SRF Cavities	81	75
Ring Accumulation Turns	1060	530
Ring Current	25 A	9 A
Ring Bunch Intensity	1.5x10 ¹⁴	0.5x10 ¹⁴
Ring Space Charge Tune Spread	0.15	0.05

・ビームパワーは設計値の36%まで到達
・ピーク電流は、ほぼ設計値に到達
・パルス幅が設計値の半分
・エネルギーは88%
超伝導空洞81台中6台が停止している。
そのうち4台(クライオモジュール1台分)は
ビームラインから外してメンテナンス中。所期の性能を確認した。

1GeV超伝導リニアック (超伝導部186MeV~1GeV) 中性子源:2MW リニアック部:約300m Upgrade 1.3GeV 59mA (3MW) エネルギー:超伝導で1GeVクラス達成。 ビーム電流:パルスだが30mAクラス。 出力制御:デューティにより制御。 信頼性 :典型的な供用運転では稼働率70 ~80%程度。

加速器の信頼性(SNS)

・0.5MW運転(2008年6月)においては、 稼働率80%を超えた

加速器の技術開発(IFMIF)

3&4

0.166

280

48

3

3x4

6.03

26/40

1

0.094

180

40

1

1 x 8

4.64

9

2

0.094

180

40

2

2×5

4.30

14.5

Superconducting Linac: (HWR) Half Wave Resonater 22.5m

P.Garin EPAC08

超伝導技術は、ADS用加速器の 低エネルギー部に適応可能。

Cryomodules

Cavity length (mm)

Beam aperture (mm)

Number of cavities /

Number of solenoids

Cryostat length (mm)

Output energy (MeV)

Number of cavities / period

Cavity B

cryostat

加速器の技術開発(EUROTRANS)

PDS-XADS

Superconducting linac: Highly modular and upgradeable (same concept for prototype & industrial scale) ; Excellent potential for reliability ; High efficiency (optimized operation cost)

J-L. BIARROTTE, HPPA 2007, 07-05-2007, Mol, Belgium.

ADS用加速器全般の技術開発

11

加速器の技術開発(J-PARC/JAEA)

目的: ADS用加速器に必要な高出力(30MW)、高エネルギー効率(30%以上)、高信頼性を得るための 超伝導線形加速器を開発する

成果と今後の課題:

□ 温度2.1Kにて最大表面電界30MV/m以上を記録し、高エネルギー部の技術成立性を実証 □ 今後、極低温設計の改善、より短尺(現在は470mと推定)での加速方法の検討

12

加速器の要求性能と課題

	ビーム加速 (0.6~1.5GeV)	ビームパワー (<30MW)	ビームパワー 制御	CW1Ł	信頼性
初段部 (~数MeV)	Ø	Ø	Ο	0	0
低エネルギー部 (~数10MeV)	∆1)	∆1)	Ο	∆1)	$\Delta^{1)}$
中エネルギー部 (~約200MeV)	∆1)	∆1)	0	∆1)	∆1)
高エネルギー部 (~GeV領域)	Ø	0	0	0	Ø
高周波源	Ο	Ο	Ο	Ο	$\Delta^{2)}$

1) 低/中エネルギー部については、IFMIF、EUROTRANSの成果が期待される。

- 2) 高周波源の安定性については、J-PARC、SNSの成果が期待される。
- *初段部については、ビームパワー制御、信頼性についての実証が必要
- *より高効率、低コストを実現するために、高エネルギー部、高周波源で開発の余地有。13

加速器の信頼性向上シナリオ

加速器の建設コスト

高エネルギー超伝導加速部の建設コスト

水本元治、日本加速器学会誌 Vol.3, No.1, 2006

コスト(30MW)	相対コスト	個数	単位	全体
(1)長さに依存				
加速構造体	0.4	363.9	m	146
冷凍機	0.2	363.9	m	73
補助装置(ビームモニター等)	0.05	363.9	m	18
(2)空洞の数に依存				
加速空洞	0.2	152	個	30
収束用Q磁石	0.05	152	個	8
真空系	0.05	76	個	4
高周波アンプ(クライストロン)	0.4	51	個	20
立体回路	0.06	51	個	3
直流高圧電源	1	51	個	51
低レベル・補助電源・立体回路	0.2	51	個	10
(3)その他(固定的なもの)				
中央制御• 発振系• 安全系	50	1		50
				413

加速エネルギーが高くなる(長さが長くなり、部品数が増加する)程コストが高くなる

今後の検討課題・低/中エネルギー部のコスト評価。

・機器毎のコストの精度(SNS等の経験を利用)向上

ADS用加速器開発の進め方の想定

>大電力化

低/中エネルギー部のCW化、超伝導化が最大の課題。 IFMIF、EUROTRANSの成果によるところ大。

>出力制御

パルス運転でのデューティ、ビーム電流値の調整により可能。 >信頼性

> イオン源、高周波源、高周波放電の対策により対応可能。 J-PARC、SNSの加速器運転経験が重要。

> 経済性

現状の概算では想定の範囲内。さらに精度を向上させる必要有。 さらに削減するためには、設計の最適化及び超伝導空洞と高周 波源の高度化が有効。