

OUTLINE

- 1. Short introduction
- 2. Nuclear Energy in JAPAN's "Growth Strategy"
- 3. Global expanded use of Nuclear Energy
- 4. Conclusions

Atomic Energy Commission of JAPAN

- > Five Commissioners
 - Led by the Chairman (Prof. Kondo)
 - Four out of five: newly assigned in January 2010
- > Plan, Deliberate and Decide on basic policies
 - R&D
 - Use of NE (including nuclear applications)

2

- 1. Short introduction
- 2. Nuclear Energy in JAPAN's "Growth Strategy"
- 3. Global expanded use of Nuclear Energy
- 4. Conclusions

NE's contribution to JAPAN's Growth Strategy

- Growth strategy by "Green innovation" and "Life innovation"
 expected for release in June 2010
- 25% reduction from 1990 level of CO2 emission by 2020, on the condition that all other major emitters agree on ambitious reduction targets
- Contribution of nuclear power to "Green innovation"
 - > Climate change policy "for" the economy, not necessarily "against"
 - ➤ 1% increase of availability displaces CO2 emission by 3M Tons/Y
 - ➤ One new unit displaces CO2 emission by 5M Tons/Y
- NPP projects in & out of Japan leading to job and economy
- Contribution of nuclear applications to "Life innovation"
 - Improved standard of living (medical use, food irradiation etc)

4

AEC's draft policy paper (27April2010) discusses

- 1) Efficient use of existing NPPs
 - Restart criteria and short refuelling/maintenance outage
 - Reliability-centered maintenance
 - Power prating
 - Long operating cycle
- 2) New nuclear build as planned
- 3) Contribution by NPP Projects outside of Japan to meet the demand
- 4) Supporting environment, institutional arrangement and fuel cycle

To achieve the proposed role in the Growth Strategy

- Need to restart of remaining units at Kashiwazaki-Kariwa
 - Unit 6 & 7 : resumed operation
 - Other units : inspection/assessment/modification work is underway
- Need to revisit gaps from global standard practices [Examples]
 - Use best practices in the world etc.
 Operational cycle, Power uprating, outage duration, licensing procedures (pre-approval of standard design in plant and fuel) etc.
 - > A number of organizations with similar functions
 - Low mobility of experts among nuclear organizations

Also, Japan needs to implement fuel cycle & FR policy as planned

a) Start of commercial operation of Reprocessing Plant and interim storage of SF

99% of commissioning completed, but delay in establishing operational procedure of the joule-heating ceramic glass-melter for HLW vitrification line

b) SF storage for surplus beyond reprocessing capacity

JNFL Reprocessing plant

5,000 Tons Dry Storage at Mutsu By TEPCO/JAPC Scheduled for 2012 Under licensing review

10

c) Restart of Monju FR

Sodium leakage: December 8, 1995

Restart: May 6, 2010

d) Use of MOX fuel in LWRs

- MOX in LWRs
 - ➤ Plan for use of MOX in 16-18 LWRs by 2015
 - > 2 LWRs (Genkai 3 and Ikata 3) are in operation using MOX
 - > 7 LWRs (including full-MOX Ohma ABWR) : licensed
- Recovered Pu from foreign reprocessors → foreign fabricators
- Domestic MOX fabrication plant (130 MT/YR)

start construction 2010 start production 2015

1

- 1. Short introduction
- 2. Nuclear Energy in JAPAN's "Growth Strategy"
- 3. Global expanded use of Nuclear Energy
- 4. Conclusions

IAEA member states considering introduction or expanded use of nuclear power

√2009 IAEA Projection (RDS-1) by 2030

- 807 GWe in operation in Hi-projection (2.18 x current 370 GWe)
- 511 GWe in operation in Lo-projection (1.38 x current 370 GWe)
- Continuous trend of increase in the number in recent several years
- Most of the growth in existing 30 NP countries
- Newcomers: 2(Lo)-6(Hi) by 2020 6(Lo)-21(Hi) by 2030
- ✓ More than 60 Member States have expressed through different channels to the IAEA their interest in the introduction of nuclear power

14

Challenges of expansion/introduction of Nuclear Power (IAEA status and prospect report on nuclear power, 2008)

- 1. Safety and reliability
- 2. Economic competitiveness and financing
- 3. Public acceptance
- 4. Uranium resources
- 5. Fuel and waste management
- 6. Human and industrial resources
- 7. Proliferation risk and security
- 8. Infrastructures, especially in new entrants countries

Cooperation with newcomers: Issues for consideration

1) Responsible supply and responsible use

For international confidence building (safety, security, non-proliferation, sound infrastructure)

- Review of Supplier's safety design
- Newcomer's progressive capacity building, including culture for safety, ownership and transparency
- Code of conduct (Suppliers & Newcomers)
- Excessive government-to-government deal has a potential to jeopardize technology development based on market principle

2) Assistance in specific enabling conditions

Financing/HRD/ Technology Transfer etc.

3) Regional and multi-lateral/international cooperation

- Coordination among players (IAEA, EC, WANO, bilateral...) to effectively address the gaps in the newcomers capacity building
- > AOS

Challenges for operating reactors

- Continued vigilance in safety and safeguards
- > Aging workforce and facility
- > Uncertainties in spent fuel management
- Preparation for waste disposal, decommissioning
- > Technology updating
- > Stable supply of fuel/Uranium at reasonable price
- Security issues etc.

Network is the key

- 1. Share information so that best practice may prevail and LL may understood
- 2. Network by Universities/Research institutes & Utility
 - To address real practical issues
 - (Example) MIT Utility programme

17

How Japan will be able to contribute to the global expanded use?

Contribution to newcomers' NE programme

- Support of IAEA's activities
- Workshops/Seminars on earthquake engineering/Safeguard etc
- Recent (2010April) NNSA-MEXT MOC (Memorandum of Cooperation) includes "collaboration to establish nuclear safeguards and security infrastructure in third countries"
- Experiences/LL of localization
 - > 12 years from conception to start of commercial operation
 - > 20 years to complete localization
- Experiences/LL from 44 years of operation
- Financing, One-stop shopping by SPC etc
- Human Resources Development (universities, JAEA)
- To "Life innovation" as well: use of radiation in medical use & agriculture to improve the living standards of newcomers

Concerted efforts to increase competitiveness in the global market

- Government (METI), Industry, Utility, Research Institute etc
- Proposal by JAIF to the PM (2010 April 20)
 - 1) Establish national focal point for competitive NPP Projects
 - 2) Timely action for bilateral cooperation agreement
 - 3) Reduce financial risk both for Suppliers and Recipients etc.
- JBIC (Japan Bank for International Cooperation: Financing to projects involving Japanese companies) & NEXI (Nippon Export and Investment Insurance) to NPP projects
- Enabling one-stop shopping by a Special Purpose Company

Examples of unique added value by JAPAN

(Engineering)

- Continuously deployed new units in JAPAN
- → Short construction and construction management
- Pioneering the use digital control for NPPs since 1980's
- Earthquake engineering
- Key components supply such as large forging

(Institutional)

- Setting an model case for Integrated Safeguard by the IAEA
- Framework of local area vitalization to sponsoring community

20

Lessons Learned from 2007 earthquake to be utilized for new builds

- •To pay attention to relative displacement between non-safety grade & safety grade structures (Business continuity issue)
- To consider the inclination of a nearby fault to the NPP (Anisotropical release of energy)
- To consider amplification effect underground Structural irregularity in evaluating the propagation of seismic wave (Local amplification)

 Free surface of the base stratum (about GL-150~300m)
- Others;
- Emergency preparedness
- Indicator of energy applied to equipments

Long-term sustainable NE programme needs technological and institutional innovation

EXAMPLES

- (a) SMR development to expand potential of the use
- (b) Non-electric applications of NP
 - heat and transportation
 - help chemical energy production and production of energy carrier
 - ◆ Recovery of oil from tar sand (Canada)
 - ◆ Coal Liquefaction (S. Africa, Australia)
 - ◆Hydrogen (JAEA's HTR300)
- (c) Closed FC using FR for long-term assurance of supply
- (d) Addressing institutional aspect
 - Lifting nuclear exclusion from CDM/JI
 - Achieving level playing field
 - Multi-lateral arrangement for AOS etc.

วว

- 1. Short introduction
- 2. Nuclear Energy in JAPAN's "Growth Strategy"
- 3. Global expanded use of Nuclear Energy
- 4. Conclusions

Concluding remark

- 1. High potential to contribute green growth Recognition of marginal abatement cost
- 2. Challenges include;
 Responsible supply and use
 Institutional innovation
 Networking so that best practices may prevail

