次世代軽水炉等技術開発に係る
中間評価報告書
～約2年間の開発に対する評価と今後の開発のあり方について～

平成22年7月29日
財団法人 エネルギー総合工学研究所
目次

1. はじめに .. 1
2. 開発目標 .. 2
3. 次世代軽水炉の概要 ... 4
 3.1 次世代軽水炉の特長 .. 4
 3.2 次世代軽水炉のプラント概念 6
 3.2.1 次世代 BWR のプラント概念 6
 3.2.2 次世代 PWR のプラント概念 8
 3.2.3 電気出力 80 万～100 万 kW 級への対応 10
 3.3 要素技術開発 .. 11
4. 円滑な導入に向けて .. 16
 4.1 市場調査 ... 16
 4.1.1 需要、政策、規制動向等 16
 4.1.2 ユーザニーズ等 .. 17
 4.1.3 市場調査結果のまとめ 18
 4.2 導入シナリオ .. 19
 4.2.1 基本的考え方 .. 19
 4.2.2 プラントの導入シナリオ 19
5. 安全規制及び規格基準の整備 22
6. 開発計画とロードマップ ... 23
 6.1 開発計画とロードマップの策定 23
 6.2 国際展開の促進について 23
7. 開発推進 ... 27
8. 評価 ... 29
 8.1 目標達成度の評価 .. 29
 8.2 総合評価 .. 32
9. おわりに .. 34

用語解説 .. 35

付図 1. H P － A B WR（次世代 BWR）
付図 2. H P － A P W R（次世代 PWR）
1. はじめに

原子力発電は、供給安定性に優れ、発電過程で二酸化炭素を排出しないという特性を有することから、我が国における基幹電源としてこれまで以上に重要な役割を担うものとして期待されている。2030年前後から本格化が予想される代替炉建設（リプレース）の円滑化は、我が国のエネルギーセキュリティを確保するうえで重要な課題であり、経済性と安全性に優れたプラントを開発し、供給サイドからも導入を促進していく必要がある。

また、2030年から2050年の間に運転年数60年を迎える既設炉は、我が国を始め米国と欧州を合わせて約270基に上り、これらのリプレース需要に加え、アジアや中近東の原子力新規導入国などの新設需要も拡大することが想定される。これらの世界的な需要に対し、我が国の原子力の国際展開を進めることは、世界のエネルギーの安定供給と地球温暖化問題への貢献と共に、我が国の経済成長の観点からも重要である。このためには、我が国メーカーが開発するプラントが国際標準炉として海外市場にも広く受け入れられるものとし、国際展開の促進を図る必要がある。また、これらの取組みを支える原子力分野の技術と人材の維持・強化を図っていく必要がある。

これらの背景の中、原子力立国計画での指摘を踏まえ、約2年間の調査研究（以下「FS」という。）を経て、2008年度から次世代軽水炉等技術開発（以下「次世代軽水炉開発」又は「本開発」という。）に本格着手した。本開発は、現行最新の炉を陵駕する高い革新性を有する技術への挑戦であり、ナショナルプロジェクトとして国の支援の下、メーカー、電気事業者が連携し、学識経験者などの協力を得て我が国の総力を挙げた取組として進めている。また、大型軽水炉をその概念設計段階から開発していくことは約25年ぶりの意欲的な試みであり、ベテランと若手の技術者が一体となり取り組んでいる。

開発にあたっては、大規模かつ長期に亘るプロジェクトであることから、2010年度上期までに中間評価のための全体ホールドポイント（以下「HP」と略す。）を設け、当初2年間の成果及び進捗状況等を多面的かつ総合的に評価することとした。

本評価報告書は、エネルギー総合工学研究所が、プロジェクトの中核機関として、これまでの約2年間の成果及び進捗状況等をとりまとめ、それらの評価を行ったものである。
2. 開発目標

次世代軽水炉は、2030年頃の導入を目指した国内既設炉のリプレース炉であると同時に、海外市場にも受け入れられる標準設計のプラント、すなわち国際標準炉として位置付けている。

FSでは、ユーザである電気事業者の豊富な運転経験、海外ユーザの新型軽水炉に対する要件、競合炉の性能などを踏まえ、基本条件、安全性、経済性、社会的受容性、運営・運転・保全、国際標準の6項目について要件が具現化されている。本開発では、最新の市場調査から国際標準炉として考慮すべき要件を整理し、FSで設定した要件を見直して開発目標（性能目標）とした。

基本条件である電気出力は、スケールメリットの追求と電力系統への影響を勘案し170万〜180万kWを目標とした。また、中型炉に対する需要もあろうことから、170万〜180万kW設計と共通技術を採用して、標準化効果を阻害せずに80万〜100万kW程度にも対応可能であることを要件とした。これらは、国内では立地制約と経済性の観点から、また、海外でも米欧など既に170万kW級の導入計画もあるなど大型化の傾向であることから、2030年頃を展望しても妥当なものと判断した。80万〜100万kWへの対応については、出力規模は現実的には地域需要、インフラ、投資耐力を踏まえ決定されること、当該出力規模の需要は新規原子力導入国などにおいても将来的にも存在すると想定できることから、2030年頃を展望しても有効な目標と判断した。

安全性は、2030年頃を展望しても国際的に遜色のない水準を求めた。経済性については、建設単価、発電コスト等について2030年頃の国際標準炉としても十分な競争力があることや、建設期間の短縮を定めた。社会的受容性は、地震や津波に対する設計基準を上回る残余のリスクへの裕度確保や、航空機落下やセキュリティ対応等について、運営・運転・保全については、保守物量の削減や保守性の向上等について求めた。国際標準に関しては、地条件によらない標準設計と共に、米欧の許認可・規格基準等に対する可能なことを目標として設定した。

これら主な要件の一覧を表2-1に示す。
表 2-1 次世代軽水炉の開発目標

<table>
<thead>
<tr>
<th>項 目</th>
<th>主な要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 基本条件</td>
<td>電気出力 170 万～180 万 kW
但し 170 万～180 万 kW 設計と共通技術を採用して標準化効果を阻害せずに 80 万～100 万 kW に対応可能なこと</td>
</tr>
<tr>
<td>2. 安全性</td>
<td>国際的に遜色のない水準の炉心損傷頻度及び格納容器機能喪失頻度
シビアアクシデント対策を設計上考慮</td>
</tr>
<tr>
<td>3. 経済性</td>
<td>建設単価: 約 13 万円/kW（成熟機）
建設期間: 30 ヶ月以下(岩盤検査～運開) かつ工期が遵守できること
時間稼働率: 97％(寿命平均), 24 ヶ月運転サイクル
設計寿命: 80 年
発電コストは他電源に対し競争力を有すること</td>
</tr>
<tr>
<td>4. 社会的受容性</td>
<td>環境への放射性物質の大規模放出の確率を十分に低くできる設計であること
地震・津波: 残余のリスクに対する裕度を確保
米欧の航空機落下とセキュリティ対策に対応可能なこと
従業者線量: 現行水準を十分に下回るものであること</td>
</tr>
<tr>
<td>5. 運営・運転・保全</td>
<td>保守物量: 現行最新プラントの 50%削減
保守性向上、保守負荷の平準化
炉心設計: 取出平均燃焼度 70GWD/t, 全炉心 MOX に対応可
新技術はプラント導入時までに十分な成熟度を有すること</td>
</tr>
<tr>
<td>6. 国際標準</td>
<td>米国及び欧州の許認可、規格基準に対応可能なこと
立地条件によらない標準設計</td>
</tr>
</tbody>
</table>
3. 次世代軽水炉の概要

3.1 次世代軽水炉の特長

次世代軽水炉は、前章にて示した開発目標を達成すると共に、国内外のユーザにとって魅力あるプラントとする必要がある。

FSでは国内ユーザからの期待をまとめ、次世代軽水炉を「2030年頃に世界最高水準の安全性と経済性を有し、社会に受け入れやすく、現場に優しい、国際標準プラント」と位置付けている。本開発ではこれを踏まえ、国際標準炉の獲得に向けた観点から市場調査を実施し、国内外のユーザの期待や着目点に基づき開発目標の中から重点的に伸ばす要件を抽出し、次世代軽水炉の特長（魅力）として以下の3つに分類、整理した。その特長と設定理由と共に以下に示す。

＜次世代軽水炉の特長（魅力）＞

■ 経済性－建設単価・発電コストの低減

経済性に関し、国内外ユーザ共に炉型選定の際、最も着目するのは建設費である。また、発電コストは、特に海外において他電源に対する競争力の指標として原子力建設の意志決定における重要な因子となっている。このため、建設単価と発電コストを大きく低減させたプラントは、ユーザにとって大きな魅力となると考えた。

■ 安全性－世界最高水準の安全性

これまでに達成してきた安全性を確保しつつ、シビアアクシデント対策に加え航空機落下、地震や津波などの外的要因に対する裕度を向上したプラントが世界的にも望まれている。開発目標で社会受容性として分類しているこれらの要件は、一般的には安全という概念に含まれるため、世界最高水準の安全性を特長の一つとして設定した。

■ 運営・運転・保全性－運転し易く使い易いプラント

ユーザの豊富なプラントの運営や運転経験を反映し、保守性をさらに向上させた設計は、国内はもとより海外への円滑な導入にとっても大きな魅力となる。運転し易く使い易いプラントであることを伸ばすべき特長として設定した。

プラント概念設計検討にあたっては、我が国の最新プラントである改良型沸騰水型原子炉（ABWR）及び改良型加圧水型原子炉（APWR）を基にさらなる改良発展をさせるものとし、特長を伸ばす観点から基本方針を策定して表3.1-1のとおりまとめた。
表 3.1-1 プラント概念設計の基本方針

<table>
<thead>
<tr>
<th>特 長</th>
<th>項目</th>
<th>基本方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>経済性</td>
<td>建設単価・発電コスト低減の追求</td>
<td>建設単価低減</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 大出力化によるスケールメリットの追求</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• プラント標準化</td>
</tr>
<tr>
<td></td>
<td>工期短縮</td>
<td>• 大モジュール化工法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 併進工事によるクリティカル工事の削減</td>
</tr>
<tr>
<td></td>
<td>燃料サイクル費低減、稼働率向上</td>
<td>燃料サイクル費低減</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 高燃焼度化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 炉心燃焼の効率化・省ウラン化</td>
</tr>
<tr>
<td>安全性</td>
<td>世界最高水準の安全性（地震・津波、シビアアクシデント、セキュリティ等に対する裕度向上）</td>
<td>外的要因（地震・津波）、セキュリティ対策、航空機落下対策</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 最終ヒートシンク多様化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 安全設備の多重性と分離設計強化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 建屋免震化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 建屋壁による防護（航空機落下対策）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>シビアアクシデント対策</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 炉心溶融デブリ冷却設備等の設置</td>
</tr>
<tr>
<td>運営・運転・保全</td>
<td>運転し易く使い易いプラント</td>
<td>保守性向上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 保守を考慮した配置・系統構成</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 保守性に優れた機器導入</td>
</tr>
<tr>
<td></td>
<td>保守物量削減</td>
<td>保守物量削減</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 設備簡素化</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 保守計画（頻度・周期）合理化</td>
</tr>
</tbody>
</table>
3.2 次世代軽水炉のプラント概念

3.2.1 次世代 BWR のプラント概念

次世代 BWR の概念は、豊富な建設経験と運転実績を蓄積してきた ABWR をベースに、インターナルポンプ（RIP）、制御棒駆動機構（FMCRD）などの優れた特長を有する技術は踏襲しつつ、新技術の開発により魅力ある炉概念を確立した。なお、開発が必要な要素技術をアンダーラインで示した。

■ 経済性-建設単価・発電コストの低減

プラント出力は、主要機器の大型化（主蒸気隔離弁（MSIV）、ベント管等）による機器数増加回避、及びタービン系機器の高性能化、低圧損 MSIV や低圧損セパレータ等の採用によるプラント熱効率向上により、176 万 k W を達成した。

建屋構成については、免震技術の導入により、サイトによる地震条件の差を免震装置で吸収し、上物構造を標準化させることで、立地条件によらない標準化プラントとした。

建設工期については、その約 40%のクリティカルパスを占める格納容器に鋼板コンクリート（SC）構造を採用し、原子炉格納容器（円筒建屋）と原子炉建屋（外側建屋）の併進工事を可能にするとともに、建屋低層化によりモジュール化を促進することで建設工期の大幅短縮（岩盤検査から運開まで 30 ヶ月）を図った。

次世代燃料（ウラン濃縮度 5〜10%）の採用と高燃焼度領域における水素吸収を抑え、かつ腐食に強い被覆管材料を採用し、24 ヶ月運転と更なる高燃焼度（70GWd/t）を同時に達成する。さらに、BWR の特徴であるスペクトルシフト効果を最大限に引き出すために、炉心流量制御幅を約 40%まで拡大させるとともに、スペクトルシフト燃料を用いることで、省ウラン化を図った。さらに燃料内二相流挙動解明技術の確立や、大型燃料の採用により燃料設計の自由度を拡大させ、炉心高度化を進め、更なる燃料サイクル費の低減を図った。

■ 安全性-世界最高水準の達成

設計基準事故に対しては、実績のある動的 3 区分構成の安全系により早期に事故収束を図る。過渡事象対応として、高圧注水系を削除し静的機器である非常用復水器を採用し、信頼性の向上を図った。さらに、地震などの外部事象や航空機落下及び、二次被害として火災や溢水等への対応力を強化しとして、安全系設備を系統毎に物理的障壁を設置して完全分離配置とした。また、航空機落下対策については原子炉格納容器や燃料プール等、冗長性を有しない安全系設備を構造強化により防護する。

また、シビアクシデントに対しては、炉心溶融時の原子炉格納容器の耐性を強化する観点から、静的システムを活用して下部ベッテル基盤での溶融デブリの保持・冷却及び静的格納容器冷却系を用いて崩壊熱除去することで、事故時の原子炉格納容器閉じ込め機能を維持し、放射性物質の環境放出を抑制した。

■ 運営・運転・保全性-運転し易く使い易いプラント

大型燃料採用に伴う体数削減により、定検時の燃料取扱作業、制御棒交換頻度を大幅に低減させる。一方、運転・保守時の従事者被ばく線量については、原子炉系は高温浄化技術、材料表面改
質技術（放射性物質付着抑制）、水化学制御技術（放射性物質発生抑制）、タービン系はN・16 移行低減技術による線源低減と TMS による保守作業の効率化により大幅低減する。

プラント運用についてはプラントデジタル化技術（TMS!!）を用いて、プラントライフを通じ、電気事業者とメーカが有するデータベースのネットワーク化を図るとともに、収集・蓄積された情報の共有化により、ヒューマンエラー防止、保守物量低減、経年劣化等による不適合低減、運転中保守の適用拡大を図り運用性を向上させる。

また、取替に伴うプラント停止期間が長期化する部位で、かつ次世代軽水炉での中性子照射増大の影響を大きく受ける部位としてシュラウドを抽出し、材料開発を行う。廃棄物低減の観点からも 80 年交換不要を目指す。

表 3.2.1-1 次世代 BWR の主要要目

<table>
<thead>
<tr>
<th>基本条件</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>電気出力</td>
<td>1760MWe</td>
<td></td>
</tr>
<tr>
<td>炉心熱出力</td>
<td>4700MWt</td>
<td></td>
</tr>
<tr>
<td>プラント熱効率</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>炉心・燃料</td>
<td></td>
<td></td>
</tr>
<tr>
<td>燃料集合体</td>
<td>大型（1.5K）格子</td>
<td></td>
</tr>
<tr>
<td>取出平均燃焼度</td>
<td>70GWd/t 以上</td>
<td></td>
</tr>
<tr>
<td>ウラン濃縮度</td>
<td>6～8%</td>
<td></td>
</tr>
<tr>
<td>燃料体数</td>
<td>424 体</td>
<td></td>
</tr>
<tr>
<td>MOX</td>
<td>Full MOX 対応</td>
<td></td>
</tr>
<tr>
<td>原子炉冷却系・主蒸気系</td>
<td>再循環方式</td>
<td>強制再循環方式（RIP 10 台）</td>
</tr>
<tr>
<td>定格炉心流量</td>
<td>52.2×10^6kg/h</td>
<td></td>
</tr>
<tr>
<td>蒸気温度</td>
<td>287 ℃</td>
<td></td>
</tr>
<tr>
<td>原子炉圧力</td>
<td>7.17MPa</td>
<td></td>
</tr>
<tr>
<td>工学的安全系</td>
<td>安全系統構成</td>
<td>動的 3 区分</td>
</tr>
<tr>
<td>非常用電源設備</td>
<td>ディーゼル発電機（3 台）</td>
<td></td>
</tr>
<tr>
<td>計測制御系</td>
<td>フルデジタル I&C</td>
<td></td>
</tr>
<tr>
<td>タービン系</td>
<td>70 インチ級最終翼</td>
<td></td>
</tr>
<tr>
<td>格納容器</td>
<td>鋼板コンクリート構造（SC 構造）</td>
<td></td>
</tr>
<tr>
<td>運営・運転・保全</td>
<td>運転サイクル</td>
<td>24 ヶ月</td>
</tr>
<tr>
<td>設計寿命</td>
<td>80 年</td>
<td></td>
</tr>
<tr>
<td>時間稼働率</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>保守・保全</td>
<td>リスクベース運転中保守</td>
<td></td>
</tr>
<tr>
<td>外部事象</td>
<td>地震</td>
<td>免震（原子炉建屋単独またはタービン建屋一体）</td>
</tr>
<tr>
<td>航空機落下</td>
<td>航空機落下対策建屋</td>
<td></td>
</tr>
<tr>
<td>シビアアクシデント対応</td>
<td>静的デブリ冷却設備、静的格納容器冷却系（PCCS）により PCV ノーベント</td>
<td></td>
</tr>
<tr>
<td>建設工期</td>
<td>30 ヶ月</td>
<td></td>
</tr>
</tbody>
</table>

【注】今後の開発進捗等を踏まえ設計を定める

1 トータルマネジメントシステム
3.2.2 次世代 PWR のプラント概念

次世代 PWR の概念は、良好な運転実績と建設実績を蓄積してきた PWR をベースに、APWR で取り入れた炉心や蒸気発生器などの大型化と信頼性向上技術を継承しつつ、新技術の開発により魅力ある炉概念を確立した。なお、開発が必要な要素技術をアンダーラインで示した。

■ 経済性—建設単価・発電コストの低減

炉心熱出力は APWR と同等ながら世界最高熱効率（約 40%）により出力 178 万 kW を達成した。炉心出口温度（Tth2）を 325℃から 330℃に高め、高性能蒸気発生器、大型最終翼高効率タービン及び大容量一次冷却材ポンプを組合せて高い経済性を実現した。

原子炉建屋には、免震設計を導入して地震条件の差を免震装置で吸収し、立地条件に依らない構造設計など徹底したプラントの標準化を図った。

原子炉格納容器には、造船で培った技術を活用した船殻構造鋼板コンクリート方式の超大型モジュール工法を採用したほか、超大型複合モジュール工法を全面的に行採用し、建設工期の大幅な短縮と建設費の削減を図った。

高度化炉心として、ウラン濃度約 6〜8%の次世代燃料（取出平均燃焼度 70GWd/t〜90GWd/t）、中性子減速環境を最適化した燃料集合体を採用し、24ヶ月運転サイクルによる稼働率 97%の達成、燃料サイクルコストの低減を実現する。次世代燃料には、長期照射と冷却材の高温化に耐え得る革新的な被覆管材料（Zr 系、ステンレス鋼系）を適用する。また、高性能蒸気発生器には、エコノマイザと稠密伝熱管配列を採用し伝熱効率を向上させた。蒸気発生器伝熱管材料には、長寿命化及び放射性腐食生成物低減を狙った新材料を適用する。

■ 安全性—世界最高水準の達成

安全系には、大気を最終ヒートシンクとする簡素な冷却サイクルである自律安全系を採用し、高い信頼性と安全性の強化を図った。この自律安全系は完全分離 4 トレイン構成をとっており、多重性を強化すると共に、海水を最終ヒートシンクとする常用冷却系を合わせ、冷却システムの多様性を確保し信頼性を大幅に向上させている。これに加え、安全設備を免震の原子炉建屋に完全分離配置し、航空機落下等のセキュリティ、地震、津波、火災、溢水等の外的要因への対応を強化した。なお、航空機落下対策には、原子炉格納容器を含む原子炉建屋壁の強化により対応する。

シビアアクシデントに対しては、炉心溶融時の格納容器の耐性を強化する観点から、常用冷却系も活用し、炉心冷却や格納容器減圧に対する多様性を確保したほか、炉心溶融デブリの保持・冷却対策は IVR により強化する。また、海外における規制に応じた対策も取入れることが可能な設計としている。これらにより、シビアアクシデント時の格納容器閉じ込め機能を維持し放射性物質の環境放出を抑制した。

■ 運営・運転・保全性—運転し易く使い易いプラント

設備の簡素化による設備数の削減、完全分離 4 トレイン構成の安全系による運転中保守対応、ガス

1 In-Vessel Retention
タービン非用発電機などの保守性に優れた機器の採用により、保守負荷の平準化と保守作業の効率化を図った。また、プラントデジタル化技術（TMS）により、保守の頻度と周期の最適化、運営負荷の合理的低減を図る。また、二次系の水化学技術の高度化により設備合理化を図る。

表 3.2.2-1 次世代 PWR の主要要目

<table>
<thead>
<tr>
<th>基本条件</th>
<th>電気出力</th>
<th>1780MWe</th>
</tr>
</thead>
<tbody>
<tr>
<td>炉心熱出力</td>
<td>4451MWt</td>
<td></td>
</tr>
<tr>
<td>プラント熱効率</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>炉心・燃料</td>
<td>燃料集合体</td>
<td>17×17拡大ピッチ大型集合体, 14ft</td>
</tr>
<tr>
<td>取出平均燃焼度</td>
<td>70GWd/t〜90GWd/t</td>
<td></td>
</tr>
<tr>
<td>ウラン濃縮度</td>
<td>6〜8%</td>
<td></td>
</tr>
<tr>
<td>燃料体数</td>
<td>221体</td>
<td></td>
</tr>
<tr>
<td>MOX</td>
<td>Full MOX 対応</td>
<td></td>
</tr>
<tr>
<td>原子炉冷却系・主蒸気系</td>
<td>ループ数</td>
<td>4</td>
</tr>
<tr>
<td>冷却材流量</td>
<td>29,000 m³/h・Loop</td>
<td></td>
</tr>
<tr>
<td>冷却材温度、圧力</td>
<td>Thot 330℃, 15.4MPa</td>
<td></td>
</tr>
<tr>
<td>蒸気発生器</td>
<td>高性能蒸気発生器（稠密伝熱管配列、エコノマイザ付）</td>
<td></td>
</tr>
<tr>
<td>工学的安全系</td>
<td>安全系統構成</td>
<td>自律安全システム（空冷(動的)・完全分離 4 トレ ン）+高性能蓄圧タンク</td>
</tr>
<tr>
<td>非常用電源設備</td>
<td>ガスタービン発電機（4台）</td>
<td></td>
</tr>
<tr>
<td>計測制御系</td>
<td>フルデジタル I&C</td>
<td></td>
</tr>
<tr>
<td>タービン系</td>
<td>70インチ級最終翼</td>
<td></td>
</tr>
<tr>
<td>格納容器</td>
<td>船殻構造鋼板コンクリート</td>
<td></td>
</tr>
<tr>
<td>運営・運転・保全</td>
<td>運転サイクル</td>
<td>24ヶ月</td>
</tr>
<tr>
<td>設計寿命</td>
<td>80年</td>
<td></td>
</tr>
<tr>
<td>時間稼働率</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>保守・保全</td>
<td>4 トレーンによる運転中保守</td>
<td></td>
</tr>
<tr>
<td>外部事象</td>
<td>地震</td>
<td>免震（格納容器及び原子炉建屋）</td>
</tr>
<tr>
<td>航空機落下</td>
<td>航空機落下防護格納容器及び原子炉建屋</td>
<td></td>
</tr>
<tr>
<td>シビアアクシデント対応</td>
<td>格納容器冷却設備の多様化</td>
<td></td>
</tr>
<tr>
<td>炉心溶融デブリ冷却設備（IVR）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建設工期</td>
<td>30ヶ月</td>
<td></td>
</tr>
</tbody>
</table>
3.2.3 電気出力 80 万〜100 万 kW 級への対応

BWR は、主要機器であるインターナルポンプ台数を 10 台から 6 台構成として単機容量を変えずに基数を低減し、安全系・常用系については基本的に区分数や系統構成は変えずに 94 万 kW 級へ対応する。

PWR は、4 ループである次世代プラントを 2 ループ化することにより 85 万 kW 級に対応する。これにより、大型炉である次世代軽水炉の特性をそのまま踏襲し、当該規模の最新プラントに比較し高性能化を図ることが可能である。また、建設単価は、熱効率向上、主要機器の基数削減や容量低減により、当該規模の最新プラントに比較し大幅な低減が可能である。
3.3 要素技術開発

次世代軽水炉のプラント概念の成立に必要な要素技術は 3.2.1 及び 3.2.2 節にて言及しているが、表 3.3-1 にその一覧をまとめると、これらのうち、プラント概念設計検討の進捗に依存しない項目は 2008 年度から開発に着手しており、残りは HP での評価を踏まえて開始する。

これまでの約 2 年間の開発は、プラントメーカが主体となり、電気事業者のほか、大学等の有識者、関連する燃料メーカ、材料メーカ、建築会社等の参画を得た我が国の総力を挙げた取組みにて実施してきており、技術の成立性や実用化見通し等の HP までの目標を達成することができた。

次世代燃料の実用化研究（ウラン濃縮度 5〜10%）では、燃料サイクル全般に亘る技術上規制上的課題、経済性の分析、ウラン調達可能性、海外の原子力政策との関係など幅広い評価検討が不可欠である。また、関係者も、ウラン濃縮から再処理、処分分野まで広範囲に亘っている。このため、電気事業者、燃料サイクル関係事業者の協力を得て、次世代燃料導入に係る課題の明確化と解決見通し、サイクルコスト低減効果などの成果を得ることができた。

免震装置の実証においては、早期の実機導入も視野に、現行最新の耐震評価や一般建築物での実用化例などの知見を十分に踏まえた検討が必要である。開発は、電気事業者が自社サイトの地震動の最新データを提供し、プラントメーカと建築会社等が協働して検討を進めている。これに加え、大学や電力中央研究所の有識者も交えて検討を深め、これまでの約 2 年間で大型軽水炉プラントへの適用見通しを得ることができた。また、今後必要な民間規格の策定や規制の整備のため、規制機関とも意見交換を行いながら進めている。

次世代軽水炉燃料の被覆管材料、蒸気発生器伝熱管材料、炉内構造部材といった新材料の開発にあたっては、適切な知財管理の下に、プラントメーカ、燃料メーカ、材料メーカの間で各社が有する最先端の技術を出し合い進めている。これまでの約 2 年間の取組により、中核機関が中心となり、有識者のレビューを受けながら材料スクリーニングの評価手法等を統一化し、候補材料を選定すると共に、今後の長期試験計画を策定した。

このほか、これまでの約 2 年間、スペクトルシフト燃料の開発、SC 構造格納容器の開発、材料・水化学技術の高度化、プラントデジタル化技術の開発についても、試験によるデータ取得や設計検討等を行い、技術の実用化見通しを得ることができた。

これらの要素技術について、開発課題、これまで得られた成果、及び今後の計画の概要について以下に示す。

■ 経済性—建設単価・発電コストの低減

BWR と PWR の共通課題であるウラン濃縮度 5〜10%を使用する次世代燃料の実用化の課題は、技術的成立性、安全規制適合性、調達性、燃料サイクル施設への影響、燃料サイクルコストである。この約 2 年間で、調達性や技術課題に依伯解決不能な課題がないこと、経済的なメリットや規制上の課題などを確認し、実用化に対する課題について明確化できた。特に、調達については海外依存度が高いため欧米の調査を行い、課題を明確化した。また、規制上の課題対応については、規制機関とも意見交換を行いながら進めている。今後、実用化を目指して、調達性見通しの
更なる明確化、規制上の課題対応や海外関係機関と連携した活動を進めると共に、燃料加工施設等の許認可等に必要な臨界データの整備を行う。（次世代軽水炉燃料の実用化研究）

BWR 燃料被覆管については、更なる高燃焼度化に伴う水素吸収量の増加による機械特性への影響が課題となる。そこで、既往の技術・知見を結集し、Zr をベースに組成及び熱処理方法を変えた合金を設計した。各種スクリーニング試験を実施し、水素吸収特性が現行材以上で、耐食性、機械特性、製造性が現行材と同等の材料を選定した。今後、長期の試験炉照射により、照射環境下での水素吸収特性、腐食特性を確認する。（BWR 次世代燃料の開発）

BWR スペクトルシフト燃料（SSR）の実用化には、BWR 実機条件下での熱水力特性、材料健全性の確認が必要とする。模擬試験装置により熱水力試験を実施し、SSR 内水位が炉心流量により制御可能であり、安定に形成されることを確認した。また炉心の詳細解析により約 5%の省ウラン効果が得られることを確認した。今後、照射炉での腐食・強度試験や限界出力試験を行い実機適用時の健全性を確認する。（スペクトルシフト燃料の開発）

BWR の革新的な炉心燃料開発を可能とするためには、燃料集合体内の気液二相流動特性の把握が必要となる。このため、燃料集合体内の液膜挙動やクロスフロー効果を三次元的に把握するための熱水力試験を体系的に実施する。試験により BWR 実機条件下での集合体内の二相流動に関する詳細なデータを採取し、試験データベースを構築して、解析手法の確立に資する。（高性能炉心燃料内気液二相流動解析試験技術開発）

BWR 大型燃料の採用に伴い、制御棒案内管が十字型となり炉心下部構造が大幅に変わるため、自励振動等に対する健全性を確認する必要がある。そのため、流動による炉内機器の自励振動の発生限界及びその裕度を試験により確認し、解析での実機評価手法を確立すると共に、実機初号機における流動試験計画に反映する。（炉内流動試験と解析手法の開発【新規】）

BWR は、建設工期を短縮するため格納容器へ SC 構造を適用するが、事故時に熱荷重及び圧力荷重を受けるため、高温条件下での耐震・耐圧性能を見極める必要がある。これまでの 2 年間で、熱圧縮・座屈試験等の基礎試験や解析を実施し、事故時の耐熱・耐圧性能、高温条件下での耐震性能が、鉄筋コンクリート製格納容器と同等以上との結果を得て、基本的な成立性を確認した。今後、設計手法の確立、規格化に不可欠な基部・隅角部、全体構造等に係る試験・解析を進める。（SC 構造格納容器の開発）

PWR 燃料被覆管については、更なる高燃焼度化と 1 次冷却材温度上昇に伴い、耐照射特性と耐腐食特性を大幅に改良した材料が必要である。この約 2 年間で、高耐腐食性が期待できるステンレス鋼の適用性について設計評価を行い、機械特性・耐食性試験を実施し候補を選定した。また、現行炉向け次期被覆管材として開発中の Zr 系合金を評価し候補を選定した。今後、これら次世代被覆管の候補材料について長期の試験炉照射を実施し、その耐食特性や照射特性を確認する。（PWR 次世代燃料の開発）

PWR 炉心は、高燃焼度化とそれに伴う初期ウラン濃縮度の増加にもかかわらず 1960 年代の導入からその基本的な設計は変わっておらず、炉心特性を大幅に改善できる余地がある。この約 2 年

1 『新規』とは 2011 年度以降に開発を開始するものを示す。
間のプラント概念設計検討の結果、炉心燃料ピッチ拡大により炉心特性を最適化し、さらにケミカルシウム用ほう素濃度を大幅に低減できる高度化炉心の成立性見通しを得た。今後、この炉心概念を採用した炉内構造物に対し、熱流動試験や制御棒挿入試験等を実施し、その信頼性等を確認する。（高度化炉心の開発【新規】）

PWR 蒸気発生器については、基本性能の向上と共に 1 次冷却材温度上昇に伴う伝熱管材料の更なる耐腐食性改善の課題である。この約 2 年間で、伝熱管新素材の設計評価、試作、耐食性試験等を実施し、現行材料より耐食性改善が期待できる候補材を選定した。今後は、候補材について長期の実環境模擬試験等によりその健全性を確認する。（蒸気発生器伝熱管材料の開発）

PWR 蒸気発生器の基本性能に関しては、プラント熱効率向上のための伝熱効率の向上が課題である。この約 2 年間のプラント概念設計検討の結果、伝熱管配列の増密化とエコノマイザの設置によりその高性能化の見通しを得た。今後は、これらの設計変更に伴う熱流動特性等を試験により確認する。（高性能蒸気発生器の開発【新規】）

PWR プラント全体の建設工期は、現在、プレストレスト・コンクリート製格納容器（PCCV）建設が律速となっており、大モジュール化工法の適用が必要である。この約 2 年間の概念設計検討の結果、超大型モジュール化が可能となる船殻構造鋼板コンクリート構造を格納容器に適用することにより 30 ヶ月工期目標達成の見通しを得た。今後、この船殻構造格納容器の耐内圧及び耐震等の確認試験を実施し、民間規格への反映等を行う。（船殻構造格納容器の開発【新規】）

BWR／PWR 共に建屋免震（水平免震）を適用する。格納容器を含む原子炉建屋は、約 30 万 ton に及ぶ超重量構造物であり、建屋免震基準や設計基準を上回る地震に対する残余のリスクの評価が課題である。また、早期の実機導入も視野に、設計成立性を確認する必要がある。この約 2 年間で免震装置の特性データ取得、入力地震動の検討、免震プラントの試設計等を実施し、免震プラント成立性や物量低減効果を確認できた。今後、免震プラントの解析手法を確立し、民間規格等への反映に必要な免震装置特性データを取得する。（免震装置の実証）

安全性—世界最高水準の達成

BWR では過酷事故発生時に静的格納容器冷却系（PCCS）にて崩壊熱除去を行うが、非凝縮性ガスを含んだ格納容器雰囲気での過渡的な除熱性能の確認が必要である。今後、各種事故シナリオにおけるシステム応答解析を基に、設定した雰囲気条件での除熱挙動を検証すると共に性能評価手法を確立する。（格納容器冷却系のシステム挙動試験【新規】）

BWR のシビアアクシデント対策として、主要な格納容器破損要因である高温デブリによるコンクリート侵食を抑制する必要があり、デブリ接触部分に高融点の耐熱材を張るとともに、静的な注水手段を設ける。今後、高温の溶融ジェットによる耐熱材の侵食確認と融点近傍までの耐熱材の熱物性データを基に、評価モデルを確立し実機性能評価を行う。（静的デブリ冷却システム試験【新規】）

BWR では、現行 ABWR に比べて出力が増大するため、ベント管口径を拡大することで事故時の格納容器内ピーク圧力を低減する。このため、大口径ベント管を対象に、蒸気凝縮時振動荷重について、格納容器設計用の動荷重条件を設定する必要がある。今後、実規模ベント管 1 本を含むセクタ形状の試験装置を製作し、動荷重試験、試験後解析を実施して設計用の動荷重条件を整
備する。（大口径ベント管動荷重試験【新規】）

PWR 安全系は、原子炉の停止や冷却に係る機構を最適化し、直接大気を最終ヒートシンクとする自律安全系を採用した。今後、この自律安全系による1次系冷却系の熱流動試験や空気冷却器の耐震安全性試験等によりその信頼性を確認する。（自律安全系の開発【新規】）

PWR のシビアクシデント対策として IVR を採用するにあたり、原子炉容器の健全性と外表面の冷却性能が課題となる。今後、事故シナリオに基づく原子炉容器の健全性を確認すると共に限界熱流速の向上対策を検証し IVR の成立性を確認する。（溶融デブリ対策の研究【新規】）

■ 運営・運転・保全性＝運転し易く使い易いプラント

BWR 炉内構造部材については、累積中性子照射量が最大、現行炉の約2倍と想定される厳しい環境下でも、IASTC感受性の発現しない材料開発が課題となる。そこで、4つの耐 IASCC 向上コンセプトを基に、成分と組織を調整した候補材を設計した。これまでの約2年間で製造性の確認、機械特性試験、腐食試験、イオン照射試験を実施し、候補材を絞り込むと共に、期待通りの粒界腐食特性、照射誘起粒界偏析特性等を有することを確認した。今後、溶接性試験、SCC 試験で、さらに鋼種を絞り込んだ後、中性子照射試験により最終的に1鋼種を選定する。（炉内構造部材開発）

BWR 材料・水化学技術については、長期サイクル運用による放射性腐食生成物の増加に対し、水質浄化、配管・機器への放射性腐食生成物の付着抑制、運転時タービン系線量低減が課題である。この2年間で、高温浄化系、材料表面改質、燃料への Co 付着制御技術、N-16 移行低減技術に関して、実現性と実機適用性の観点から検討し、基礎試験に進める技術を選定した。今後は、基礎試験にて検証し、実機条件での適用技術のシステム検討を行う。（材料・水化学技術の高度化）

PWR 2次系設備合理化のため、給水及び蒸気発生器水中の不純物を高温のまま除去できる高温脱塩器と高温フィルタを開発する。今後、基礎試験にて検証し、実機システム設計及び大規模試験により廃液処理も含めた技術を確立する。（二次系水化学技術の開発【新規】）

BWR∥PWR 共通課題であるプラント運営・運転・保全性の更なる改善のためには、設計から廃炉までの各種情報について、先進のデジタル化技術を駆使して一元管理し運用していく必要がある。これまでの約2年間で、ニーズ調査を実施しシステムに必要な機能要素と要素間を流れるデータ種別を明確化してシステム概念を構築した。また運用高度化に寄与できることを確認した。さらにシステム実現に必要なシーズ技術を抽出し。今後2010年度にシステム概念の具体化と電力・メーカ間のデータインタフェース仕様を整理し、基本設計段階に移行する。（プラントデジタル化技術の開発【2011年度から民間開発】）

2 Irradiation Assisted Stress Corrosion Cracking
<table>
<thead>
<tr>
<th>特長</th>
<th>適用先</th>
<th>要素技術</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設単価・発電コスト低減の追求</td>
<td>共通</td>
<td>次世代軽水炉燃料の実用化研究（ウラン濃縮度 5〜10wt%）①
免震装置の実証②</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BWR</td>
<td>BWR 次世代燃料の開発①
スペクトルシフト燃料の開発①
高性能炉心燃料内気液二相流挙動解明試験技術開発①
原子炉内流動試験及び解析手法開発
SC 構造格納容器の開発④</td>
<td>2010年度～新規</td>
</tr>
<tr>
<td></td>
<td>PWR</td>
<td>PWR 次世代燃料の開発①
高度化炉心の開発
蒸気発生器伝熱管材料の開発③
高性能蒸気発生器の開発
船殻構造格納容器の開発</td>
<td>新規
新規
新規</td>
</tr>
<tr>
<td>世界最高水準の安全性</td>
<td>BWR</td>
<td>静的格納容器冷却系のシステム挙動試験
静的デブリ冷却システムの除熱特性基礎試験
大口径ベント管動荷重試験</td>
<td>新規
新規
新規</td>
</tr>
<tr>
<td></td>
<td>PWR</td>
<td>自律安全系の開発
炉心溶融デブリ対策（IVR）の研究</td>
<td>新規
新規</td>
</tr>
<tr>
<td>運転し易く使い易いプラント</td>
<td>共通</td>
<td>プラントデジタル化技術の開発（TMS）⑥</td>
<td>～2010年度</td>
</tr>
<tr>
<td></td>
<td>BWR</td>
<td>炉内構造部材開発③
材料・水化学技術の高度化③</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWR</td>
<td>二次系水化学技術の開発</td>
<td>新規</td>
</tr>
</tbody>
</table>

【注記】
1. 表中の番号は FS で設定した以下の 6つのコアコンセプトに基づく要素技術開発を示す。
 ① 世界初の濃縮度 5%超燃料を用いた原子炉系の開発による、使用済燃料の大幅削減と世界最高の稼働率実現
 ② 免震技術の採用による、立地条件によらない標準化プラントの実現
 ③ プラント設計寿命 80年とメンテナンス時の被ばく線量の大幅な低減を目指した、新材料開発と水化学の融合
 ④ 新装な建設技術の採用による建設工期の大幅短縮
 ⑤ パッシブ系、アクティブ系の最適組合せによる、世界最高水準の安全性・経済性の同時実現
 ⑥ 稼働率と安全性を同時向上させる、世界最先端のプラントデジタル化技術
2. コアコンセプト⑤については、2008〜2010年度はプラント概念設計検討において検討
3. 備考欄の「新規」とは 2011年度から開発を開始するものを示す。
4. 表中の要素技術は、次世代軽水炉等技術開発の対象のものを示す。
4. 円滑な導入に向けて

次世代軽水炉は、国際標準炉を目指すことから、海外の市場調査を実施した。これを踏まえ、開発目標を設定すると共に、プラントの特長を整理した。また、国内外における初号機運転開始（以下「運開」と略す。）までの取組やスケジュール、2号機以降の導入方法などプラントの円滑な導入のためのシナリオをまとめた。

4.1 市場調査

4.1.1 需要、政策、規制動向等

世界全体の原子力発電設備容量増加は、OECD 報告1に基づくと 2007 年から 2050 年まで 200GWe ～1,000GWe であり、地域別では、北米及び欧州が最も設備増加が期待できる。なお、EPRI は 2030 年までに米国にて 65GW の原子力発電設備の新設が必要2としている。

また、2030 ～2050 年の間に運転年数 60 年を迎えるプラント3は、米国約 100GW （約 100 基）、欧州約 120GW （約 130 基）、日本約 30GW （約 40 基）あり、米国、欧州でも 2030 年頃からリプレース需要が立ち上ると予想できる。

政策面に関し、米国では温室効果ガス排出削減に貢献する現実的なエネルギー源として原子力発電を推進する政策に変更はないものと推測している。欧州でも温室効果ガス排出削減とエネルギーセキュリティ確保の観点からフランスやフィンランドはもとより、英国、イタリア、スウェーデンも原子力推進政策に転換し始めている。ベルギーでも原子力発電の段階的な撤退を中止するなど、原子力の再評価の動きが活発化してきている。

安全規制については、欧州（フランス、英国、フィンランド等）や米国において航空機落下対策や過酷事故への評価が規制要件等に取り入れられつつある。また、欧州では深層防護の強化など安全目標に関する議論4も始まっており、今後、本開発への反映事項等について検討が必要である。

1 Nuclear Energy Outlook 2008, OECD/NEA
2 Prism/Merge Analyses 2009 Update, August 2009
3 世界的原子力発電設備の動向（2009年版） 2009年3月 日本原子力産業協会、に基づき既存炉寿命60年と評価した
4 Safety Objectives for New Power Reactors, Dec 2009, WENRA RHWG
原子力発電コストは、OECD評価6によると、石炭火力や天然ガス燃焼複合サイクル、風力発電と比較し、割引税率5%で競争力を有し、割引税率10%では北米や欧州で拮抗する。発電コストは、資本コスト、廃止措置コスト、燃料サイクルコスト（FCC）、運転保守コストから構成され、原子力の資本コストは5%割引率で約60%、10%割引率で約75%を占める。このため巨額の資本リスク及び長期建設準備期間の適切な管理が必要と結論づけられている。なお、建設単価（オーバーナイトコスト）は4,100USD/kWeを中央値として1,600〜5,900USD/kWeの範囲にあり、日本、米国、欧州の最新炉（ABWR, EPR, Advanced Gen III+）では3,000USD/kWeを超えている。

地域毎の各電源の発電コストと代表炉型の発電コスト

<table>
<thead>
<tr>
<th>地域</th>
<th>炉型</th>
<th>建設単価USD/kWe</th>
<th>発電コストUSD/MWh 5%割引率</th>
<th>発電コストUSD/MWh 10%割引率</th>
</tr>
</thead>
<tbody>
<tr>
<td>欧州（フランス）</td>
<td>EPR</td>
<td>3,860</td>
<td>56.42</td>
<td>92.38</td>
</tr>
<tr>
<td>米国</td>
<td>Advanced Gen III+</td>
<td>3,382</td>
<td>48.73</td>
<td>77.39</td>
</tr>
<tr>
<td>日本</td>
<td>ABWR</td>
<td>3,009</td>
<td>49.71</td>
<td>76.46</td>
</tr>
<tr>
<td>中国</td>
<td>AP1000</td>
<td>2,302</td>
<td>36.31</td>
<td>54.61</td>
</tr>
</tbody>
</table>

図4.1-2 地域毎の各電源の発電コストと代表炉型の発電コスト

4.1.2 ユーザニーズ等

次世代軽水炉への要求、炉選定や建設決定の際の重要事項等について、文献調査と共に欧米のユーザ等へ聞き取り調査を行った。主要な結果を以下に示す。

- 電気出力規模は、経済性のスケール効果を期待するが、現実的には地域の需要を見通し、電力網や水利などのインフラ、投資耐力等を総合的に判断し決定される（特に発展途上国においては70万〜110万kWの需要も存在）
- 炉型の選定は、一般的にユーザは自身の建設や運転経験の反映を考慮して行う傾

5 OECD Projected Costs of Generating Electricity 2010 Edition
6 Common User Considerations (CUC) by Developing Countries for Future Nuclear Energy Systems: Report of Stage 1, IAEA NP-T-2.1, 2009
向が強い

- 発電コスト（建設費、運転保守費等）は、米国及び欧州において原子力建設の決定の指標として用いられ、天然ガス等の他電源との競争力が必要である
- 建設単価は炉型選定の重要因子であるが、これと建設計画の経済的見通しと建設工期の遵守が重要である（on budget, on schedule）
- 標準化や技術の成熟は、許認可、建設、運転保守におけるリスクを低減し、建設工期の短縮や発電コスト低減に繋がるため重要である
- 安全性は現行最新の水準に加えて航空機落下対策を含むセキュリティ対策が重要である
- 米国の軽水炉技術開発戦略における開発項目のうち、次世代軽水炉開発と共通なものは、燃料高度化（高燃焼度化）、先進建設技術、材料長寿命化である

4.1.3 市場調査結果のまとめ

主要な調査結果を以下のようにまとめる。これらは、国際標準炉として考慮すべき条件でもあり、これらを踏まえ開発目標を定めると共に、プラントの特長を整理した。（第2章及び第3章参照）

- 米国、欧州、日本では、運転年数60年を迎える炉は2030年前後から多くなり始め、2050年迄に約270基と予想できる（導入シナリオに反映）
- 炉型選定の際には建設単価が最も重要である（開発目標、特長に反映）
- 原子力発電の建設決定の重要な指標として発電コストが挙げられ、他電源に対し競争力が必要である（開発目標、特長に反映）
- 建設期間短縮と共に工期が遵守できることが重要である（開発目標、特長に反映）
- 安全性は現行最新の軽水炉が有する水準の確保に加えてセキュリティ対策が必要である（開発目標、特長に反映）
- 新技術はプラント導入時迄に十分な成熟度を有する必要がある（開発目標に反映）
- 米国及び欧州の許認可、建設、運転に対応できる必要がある（開発目標に反映）

7 A CBO Study Nuclear Power's Role in Generation Electricity, May 2008, Congressional Budget Office
4.2 導入シナリオ

次世代軽水炉の円滑な導入を図るため、市場導入時期、開発スケジュール、安全規制と規格基準の整備や技術の成熟化等の実用化に向けた取組などについて相互に整合性をとり、全体を効率的、戦略的に進める道筋を描いたシナリオを策定した。

4.2.1 基本的考え方

本開発の目的である2030年前後からのリプレースの円滑化、原子力産業の国際展開と競争力の確保等や、許認可や建設の遅延リスクの低減、運転保守トラブルなどのリスク低減が重要との市場調査結果を踏まえ、導入シナリオの基本的な考え方を次のとおりとした。

1) 初号機のプラント運転開始は2030年頃までを目標とする
2) 2号機以降は標準化による習熟効果により、許認可、建設及び運転保守に係るコストとリスクを低減し、導入促進を図る
3) 適用する新技術は、安全性・信頼性を確保するため確認試験等を実施し、知見や経験を蓄積すると共に、実機への先行適用等により技術の成熟化を図る

4.2.2 プラントの導入シナリオ

プラント全体の開発プロセスは、2015年迄に基本設計完了、その後詳細設計と個別・製作設計を2025年迄に完了させ、2026年から安全審査、工認、建設・試運転を経て2030年に運転開始が可能なものとする。このため、技術開発と共に規制と規格基準等の整備を一体的に進める。

次世代軽水炉は標準設計プラントであることから、標準設計部分は再度審査しないなど合理的な安全規制制度等の実現を進める。これにより、許認可リスクの低減と期間短縮を図り、2号機以降の導入を進める。機器等の製作、建設、運転保守についても、習熟効果による工数削減や先行実績の反映による成熟化を進め、コストとリスクを低減しつつ円滑な導入を進める。

開発技術については、その成熟度を高め、許認可や建設に係るリスク低減と共に運転後の高稼働率維持を図る。このため、これまでメーカが蓄積してきた知見や経験を踏まえ、実用化に向けた確認試験や検証・確認試験等を計画的に実施する。その際、最新の解析評価技術等も駆使し、合理的・効率的な実証を加速する。また、導入条件の整った要素技術は、順次、可能な限り速やかに実機に先行適用し、許認可や製造・建設実績、運用ノウハウを蓄積する。また、2024年度末頃までには、長期の開発を要する燃料や炉心等を除く主だった技術を集積したプラント（プレ次世代軽水炉）の実現を目指す。

海外展開のターゲット市場は、市場調査を踏まえ、代替炉を含む原子力需要、インフラや経済的基盤、規制環境、市場の開放性や社会的な安定性を考慮して、米国及び欧州を重要なものとして想定する。米国市場への導入は、2030年に運転開始が可能なものとする。すなわち、設計と安全解析が終了する2021年頃から9〜10年間の許認可、建設を経て2030年には運転開始が可能なものとする。また、欧州でも同様なシナリオにて導入を図る。本来、国内実績を踏まえた海外展開が望ましいが、米国や欧州市場でも2030年頃からリプレース需要が本格化するため、市場確保のため、その立ち上がり時期の導入を目指す。
アジア等の新規原子力導入国への導入は、国内や米国・欧州における取組を踏まえ、各国の原子力開発計画等を考慮し柔軟に進める。なお、規制制度等が十分に整っていない国々は、プラント供給国の規制や規格基準、プラント運用技術等を一体として導入する可能性があり、このような場合は、国、電気事業者、メーカーが一体となり取り組む。

また、国際的な安全規制や規格基準の整備に係る取組を進め、海外市場への円滑な導入を図る。国内外及び国際間の安全規制の調和等は、規制環境の違いによる障壁を低くし海外市場への円滑な導入に繋がるものと期待できる。

なお、この導入シナリオに沿って2030年頃迄の実用化を図るためには、ナショナルプロジェクトとしての国の継続的な支援、期待する成果を得るためのメーカーの主体的な開発及び中核機関を中心とした規制及び規格基準等の整備、並びにこれら取組の下での主要ユーザである電気事業者の積極的な協力といった、関係者が連携し応分の役割を担った開発推進が必要である。
図 4.2-1 導入シナリオ
5. 安全規制及び規格基準の整備

次世代軽水炉を円滑に導入し、優れた安全性や経済性などの特長や性能を最大限発揮するためには、技術や運用等と整合した安全規制及び規格基準が必要である。このため、現行制度に囚われることなく将来を展望し、国際的な安全規制の調和なども視野に検討を進めた。

整備対象の項目は、性能目標達成や新技術の実用化の観点から既存炉に対する検討例も参考にして抽出し、以下のとおり3つに分類して具体的な対応方針の検討を行った。検討にあたっては、規制側とも連携をとり、課題解決の取組をロードマップとして策定した。

今後、さらに規制機関との対話を深め、規制機関の取組について本開発の立場から提言し早期に公式な形で規制機関のロードマップに位置づけられるよう働きかけるなど、着実な取組を図る。

(A) 新技術の適用にあたって安全規制や規格基準の新規策定や更改が必要となるもの
・ 次世代軽水炉燃料（ウラン濃縮度5〜10%、被覆管材料）
・ 免震技術
・ 蒸気発生器伝熱管材料、炉内構造部材
・ SC構造格納容器、等

新技術の適用には民間規格基準を含む現行規制の追加改訂、評価条件や解釈の明確化が必要である。今後、開発段階にて必要なデータを取得して民間規格基準に反映し、規制側のエンドースを得ることを基本的な方針とした。

(B) 運営・運転・保全性の改善に関するプラントの特長・性能の発揮のため必要となるもの
・ 検査制度の合理化
・ 機器の保守間隔延長、等

開発目標である建設期間や稼働率を達成するため、現行規制上の取扱の明確化等が必要である。しかし、これらは既設炉に対する至近の課題としても検討が進められており、現時点では開発への直接的な影響も小さいことから、しかるべき時期に取組の要否を再検討する。

(C) 国際標準炉として相応しい合理的な安全規制体系など戦略的な見直しが必要なもの
・ 設計認証制度（標準設計として重複審査を回避）
・ 国際的な安全規制の調和活動（MDEP1、IAEA等）

設計認証制度は、安全を確保しつつ審査を合理化し、立地計画から運転開始までの期間短縮など円滑な導入に資することが期待される。しかし、法令の枠組みの変更などが前提となる可能性があり、利害得失を評価し今後の在り方を整理したうえで規制機関等へ働きかけを行う。また、国際的な安全規制の調和活動は、これにより各国規制制度や水準等の差が縮まることが期待され、円滑な導入にとっても望ましい方向であるため、検討状況をフォロし必要な取組を検討する。

1. 多国間設計評価プログラム Multi-national Design Evaluation Program
6. 開発計画とロードマップ

6.1 開発計画とロードマップの策定

導入シナリオに基づき、プラント全体の開発計画、要素技術の開発計画、これと一体的に取り組む安全規制及び規格基準の整備計画について整合性をとり、ロードマップとしてまとめた。次世代 BWR 及び次世代 PWR について、プラント全体の開発計画をまとめた全体ロードマップは図 6.1-1～2 に示す。また、規制及び規格基準の整備に関するロードマップは図 6.1-3 に示している。

ロードマップは、次世代 BWR 及び次世代 PWR 共に、プラント設計／許認可／建設といった全体工程に沿って要素技術開発とそれに関連する規制や規格基準の整備活動を整合して進め、国内、海外いずれも 2030 年に運転開始可能なものとなっている。また、導入シナリオ（第 4 章参照）で検討したように、燃料及び一部の炉心等を除いたプレ次世代軽水炉は、2024 年度末頃には実現可能である。

今後、ここでまとめたロードマップに沿ってプラントの実用化とその円滑な導入に向け、着実に技術開発、並びに規制及び規格基準の整備を進めると共に、導入条件が整った技術については、順次、早期の実用化を図る。

6.2 国際展開の促進について

国際的な規制や規格基準の整備には、IAEA 安全基準体系の活用（免震等）、OECD/NEA の国際共同研究事業や二国間協力スキームの活用（5～10%濃縮ウランの適用等の国際協調が必要な課題）、MDEP 特定課題ワークショップの活用などが、また、国際的な評価や認知を得るためには、IAEA 設計レビューサービス等の活用などが有効と考えられる。今後、関係する国際機関や国と連携をとり、これらの活用の有効性を評価した上で取組を進める。

また、設計認証制度は、国内の規制機関の審査リソースの効率的活用により円滑な導入に資すると共に、審査結果の国際的活用など新規原子力導入国などの海外市場への円滑な導入にも繋がるものと期待でき、今後の在り方を整理した上で規制機関等への働きかけを行う。

国際展開の促進には、次世代軽水炉の安全性の考え方などを広く国際的に発信し、国際的な関心を喚起することが有効である。このため、上記の規制に関する取組を通り国際的な認知を広めると共に、国際会議等でのプレゼンテーションや論文・記事の投稿、ホームページ上での英文情報提供サービスの充実等を実施する。さらに、メーカー、電気事業者、国が一体となり国際展開を推進していることをアピールすることも有効である。

なお、これらの活動を実施していくことにより、国際的に活躍できる国内原子力技術者の育成にも繋がるものと期待できる。
図 6.1-1 BWR 開発全体ロードマップ

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>次世代軽水炉</td>
<td></td>
</tr>
<tr>
<td>全体系工程</td>
<td></td>
</tr>
<tr>
<td>プレ次世代軽水炉（早期の導入シナリオ）</td>
<td></td>
</tr>
<tr>
<td>次世代燃料の開発</td>
<td></td>
</tr>
<tr>
<td>燃料芯</td>
<td></td>
</tr>
<tr>
<td>被覆管材料の開発</td>
<td></td>
</tr>
<tr>
<td>炉心技術開発</td>
<td></td>
</tr>
<tr>
<td>炉内構造物の開発</td>
<td></td>
</tr>
<tr>
<td>材料・水化学技術の開発</td>
<td></td>
</tr>
<tr>
<td>安全設備</td>
<td></td>
</tr>
<tr>
<td>大口径ヘッド管の開発</td>
<td></td>
</tr>
<tr>
<td>ピアノ弦対策技術の開発</td>
<td></td>
</tr>
<tr>
<td>免震装置の開発</td>
<td></td>
</tr>
<tr>
<td>建築・建設</td>
<td></td>
</tr>
<tr>
<td>電気計画</td>
<td></td>
</tr>
<tr>
<td>プラントデジタル化技術の開発</td>
<td></td>
</tr>
</tbody>
</table>

図 6.1-1 BWR 開発全体ロードマップ
項目	2008 (H20)	2009 (H21)	2010 (H22)	2011 (H23)	2012 (H24)	2013 (H25)	2014 (H26)	2015 (H27)	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
次世代軽水炉																																			
概念設計検討	概念設計	基本設計	調整検討	基本設計	概念設計	建設/試運転	安全審査																												
技術開発																																			
フル次世代軽水炉 (早期の導入シナリオ)																																			
プラント運開																																			

図 6.1-2 PWR 開発全体ロードマップ
<table>
<thead>
<tr>
<th>項目</th>
<th>次世代軽水炉</th>
<th>プレ次世代軽水炉（早熟の導入シナロイ）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>新技術の適用</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>新技術</td>
</tr>
<tr>
<td></td>
<td></td>
<td>技術開発</td>
</tr>
<tr>
<td>2008 (H20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010 (H22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012 (H24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013 (H25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014 (H26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015 (H27)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図6.1-3 安全規制及び規格基準の整備ロードマップ
7. 開発推進

開発にあたっては、国、電気事業者、メーカが互いに連携しつつ全体の最適化に向けて応分の役割を担う必要がある。このため、財団法人 エネルギー総合工学研究所を中核機関とした協働体制を確立すると共に、実効性のある PDCA プロセスを進める体制を確立し、開発を推進してきた。

開発推進体制を図 7-1 に示す。

協働体制については、プラントメーカ 3 社が技術開発を、中核機関が全体の開発管理を担いメーカ間の総合調整等を行うことにより、メーカそれぞれが保有する最先端の技術を結集した開発が可能となり、所要の成果を得ることができる。また、新材料の開発など、中核機関は適切な知的財産等の管理の下、大学等有識者の参画を得て高い水準で技術開発が行われるようにメーカ間の調整を行った。

実効性をもって PDCA プロセスを進めるため、開発を推進する推進委員会と連絡調整会議（幹事会、分科会）、外部評価のための評価委員会を組織し、国、電気事業者、メーカ及び大学等有識者のがチェックとレビューを受ける体制を確立し、客観性をもった開発推進を行うことができた。

また、技術開発並びに安全規制及び規格基準の整備にあたっては、中核機関を中心として関連する機関との連携を確立し、規制機関、学協会等や海外機関などを含め、国内外の幅広いリソースを有効活用して検討を行い、所要の成果を得ると共に今後の開発計画を策定することができた。

この約 2 年間の取組により、今後の要素技術開発計画やプラント開発計画を具体化し、これに伴い、各メーカの分担等も明確化した。HP 以降、本格的な開発段階に移行することを踏まえ、より効率的・効果的な開発を行うべく、以下とおりの取組にて進める必要がある。

- 中核機関は、本プロジェクトの事務局的機能を果たすと共に、調査研究機関としての中立的な立場とノウハウを活かした安全規制及び規格基準の整備や国際展開等の対外調整に係る活動に取り組む。
- メーカは、プロジェクトの進捗を踏まえ、要素技術、プラント概念等の研究開発及びそのマネジメント、安全規制及び規格基準の整備や国際展開等の検討について主体的に取り組む。
- 電気事業者は、要素技術、プラント概念等の研究開発及びそのマネジメント、安全規制及び規格基準の整備や国際展開等の検討について、ユーザの立場から積極的に協力を行う。
- 国においては、次世代軽水炉開発の政策上の重要性に鑑み、引き続き必要な予算確保に向けた取組を進めると共に、国際展開に向けた環境整備を進めることが期待される。
図 7-1 開発推進体制

推進委員会
国、電気事業者、電事連、メーカー、エネ総研

中核機関
エネルギー総合工学研究所
原子力工学センターや

連絡調整会議
国、電気事業者、電事連、メーカー、エネ総研

幹事会

分科会(要素技術分野毎)

プラントメーカー
株式会社 東芝
日立 GE ニューエジ・ハイテク株式会社
三菱重工业株式会社

評価委員会
学識経験者、関係行政機関、中立機関

政策支援

電気事業者

◆原子力関連研究
大学、日本原子力研究開発機構、電力中央研究所、など…
◆国際展開、市場ニーズ
世界原子力産業協会、など…
◆安全規制
原子力安全・保安院、など…
◆规格基準整備、国際標準化
原子力学会、電気協会、機械学会、国際機械学会、など…
◆原子力関連産業
素材メーカー、建設会社、など…
8. 評価

本技術開発は、開発目標として FS にて設定された要件を基に国際標準炉として考慮すべき条件を踏まえ見直し進めてきた。ここでは、これまでに構築されたプラント概念が、設定した開発目標を達成しているか、また、国内及び海外ユーザにとっても魅力的な国際標準炉となり得るものか評価した。さらに、これまでの活動や得られた成果に対する多面的かつ総合的な評価を行った。

8.1 目標達成度の評価

設定した開発目標については、建設単価など一部を除き概ね達成できる見通しを得た。以下に評価をまとめる。表 8-1 に主な要件に対する目標達成度をまとめた。

(1) 基本条件

電気出力は、BWR176 万 kW、PWR178 万 kW であり目標を達成できている。BWR は炉心熱出力増、原子炉系及びタービン系機器の容量増加と高性能化により達成している。PWR は従来の APWR と同じ炉心熱出力ながら、原子炉系及びタービン系機器の高性能化と容量増加による熱効率向上により達成している。

80 万～100 万 kW 級には、次世代軽水炉で開発する技術を採用し、経済性、信頼性、安全性、運転保守性に優れたプラントとして対応可能である。BWR は、主機の基数削減や容量削減により 94 万 kW 級、PWR は 2 ループ化により 85 万 kW 級に対応している。

(2) 安全性

外的事故を含め、最終ヒートシンク多様化など現行最新プラントより信頼性が向上されており、国際的に遜色のない水準の炉心損傷頻度及び格納容器機能損失頻度を達成する見通しを得ている。

シビアアクシデント対策として、BWR はデブリ冷却設備や静的格納容器除熱系など、PWR は IVR や 1 次系減圧設備、最終ヒートシンクの多様化による格納容器冷却など、設計上で対策が取り入れられている。

(3) 経済性

建設単価は、目標に達成していないが、海外の最新炉にくらべ十分に低くなっており、国際標準炉として十分に競争力があるレベルであると評価できる。

建設期間は、30 ヶ月を達成する見通しである。BWR は SC 構造を PWR は船殻構造をそれぞれの格納容器に採用し、これら大モジュール化工法は、建設期間を短縮できると共に、工程遵守が図れるものである。

発電コストについては、現行の原子力発電は、OECD によると石炭火力や天然ガス燃焼複合サイクルプラント等の他電源に比較し、割引率 5% で競争力を有し、割引率 10% では北米や欧州で拮抗するが、建設単価等の資本費の低減、燃料サイクル費低減、単位出力当たり運転保守費の大幅な低減により、他電源に対する十分な優位性を確保可能と評価できる。
(4) 社会的受容性

シビアアクシデント対策を設計上考慮しており、かつ、安全系トレンド分離等の設計強化により環境への放射性物質の大規模放出の確率を十分に低くできる設計となっている。

地震、津波に対する残余のリスクについては、BWR／PWR 共に免震設計及び最終ヒートシンクの多様化により裕度を確保しており、目標を達成している。

米欧の航空機落下・セキュリティ対策への対応については、建屋壁の強化、安全設備の物理的分離により設計上考慮されており、目標を達成している。

従事者線量についても、水化学の高度化、保守の合理化や TMS 導入により目標達成の見通しが得られている。

(5) 運営・運転・保全

保守物量削減については、正味の削減量は目標に達成していないが、安全系の最適設計による保守対象削減、TMS 導入等による保守周期の延長や作業効率化により、単位発電量換算では目標値を達成できる見通しである。

保守性向上と保守負荷平準化については、メンテナンスフリー化保守性に優れた機器の採用、オンライン保守により目標達成の見通しが得られている。

炉心設計については、次世代燃料の開発により目標である 70GWd/t 以上を達成する見通しである。また、全炉心 MOX 対応設計（富化度制限有り）としている。

新技術の成熟化については、導入シナリオでまとめたように、今後の開発段階における確証試験等の実施、早期技術導入により成熟度を高めることができる。

(6) 国際標準

米欧の許認可・規格基準類へ対応については、セキュリティ対策を含む米国及び欧州の安全規制やユーザ要件に適合できる見通しが得られている。なお、シビアアクシデント（安全目標）、セキュリティ、航空機落下対策等の各国規制動向等は引き続きフォロが必要である。

立地に依存しない標準設計については、免震技術導入による標準化設計が実現され目標を達成している。
表 8-1 次世代軽水炉の開発目標に対する達成度評価結果（現状のプラント概念に基づく評価）

<table>
<thead>
<tr>
<th>項目</th>
<th>開発目標（要件）</th>
<th>達成度評価</th>
</tr>
</thead>
</table>
| 1.基本条件 | 電気出力: 170〜180 万 kW | BWR: 176 万 kW 級
PWR: 178 万 kW 級 |
| | 炉心熱出力増大、機器容量増加と高性能化 | |
| | 炉心熱出力は APWR と同等ながら熱効率向上、機器容量増加と高性能化 | |
| | 共通技術を採用し、標準化効果を阻害せずに 80〜100 万 kW に対応可能 | BWR: 主機の基数や容量削減（RIP6 台構成等）により標準化効果を阻害せず 94 万 kW 級に対応
PWR: 2 ループ化による主機基数削減により標準化効果を阻害せず 85 万 kW 級に対応 |
| 2.安全性 | 電気出力: 170〜180 万 kW | 以下のような対策を設計上考慮 |
| | 炉心損傷頻度及び格納容器機能損失頻度 | |
| | デブリ処理装置を設計上考慮 | |
| | 外的事故を含め、最終ヒートシンク多様化など現行最新プラントより信頼性が向上されており、今後見通し |
| 3.経済性 | 建設単価（熟成機）: 約 13 万円/kW | 目標まで達成していないが海外の最新炉に比べ十分に低く競争力がある |
| | 建設期間: 30 ヶ月（岩盤検査〜運転開始）かつ建設工期が遵守できる | 30 ヶ月（岩盤検査〜運転開始）かつ建設工期が遵守できる |
| | 時間稼働率: 97%（寿命平均）、24 ヶ月運転サイクル | 約 97%、24 ヶ月運転サイクル |
| | 設計寿命: 80 年 | 設計寿命: 80 年 |
| | 発電コストは他電源に対し競争力を有すること | 現行の原子力発電コストの約 10%では北米や欧州で拮抗するが、建設単価、保守物量大幅削減、燃料サイクル削減効果により、競争力を確保できる見通し |
| 4.社会的受容性 | 環境への放射性物質の大規模放出の確率を十分に低くでき る設計であること | 免震により基準地震動の 2 倍以上の裕度を確保、並びにヒートシンク多様化（大気）により海水冷却系使用不可で も安全に停止可能 |
| | 地震・津波に関する残余のリスクへの対応 | 短期/中期/長期に最適化しプラントライフ中に振り分け実施 |
| | 炉心設計: 取出平均燃焼度 70GWd/t, 全炉心 MOX 対応可能 | |
| | 従事者線量: 現行水準を十分に下回るものであること | |
| 5.運転・運用・保全 | 保守物量: 現行最新プラントの 50% | 50%程度削減(単位発電電力量あたり) |
| | 保守性の向上、保守負荷の平準化 | メタソンスリリー化、保守性の良い機器採用、信頼性重視保全 (RCM)やオフライン保守による平準化等 |
| | 炉心設計: 取出平均燃焼度 70GWd/t, 全炉心 MOX 対応可能 | BWR: 70GWd/t, 全炉心 MOX 対応可能
PWR: 70〜90GWd/t, 全炉心 MOX 対応可能 |
| | 開発段階における供試試験など実施、早期技術開発導入により成熟度を高める | |
| 6.国際標準 | 米欧の許認可・規格基準類に対する対応 | 米欧のユーザ要件並びに安全規制に適合可能 |
| | 立地条件によらずに標準的な設計が可能 | 免震設計導入により標準化した設計 |
8.2 総合評価

次世代軽水炉は、開発目標を概ね満足することができており、現行最新のプラントに比べても十分な優位性があると評価できる。また、本開発プロジェクトに対して多面的かつ総合的に行った評価を以下のとおりまとめる。開発計画や開発体制について必要な改善や是正措置を施しつつ、HP 以降も本開発プロジェクトを継続していくことが妥当であると判断できる。

【プラント概念】ユーザにとって魅力的で国際標準炉となり得るプラント概念（BWR、PWR 各 1 炉型）が構築できているか

BWR 及び PWR 各 1 炉型のプラント概念は、ABWR/APWR で実績のある技術や経験を継承しつつ、開発目標を概ね達成し、国内外ユーザにとって魅力的で、国際標準炉となり得る見通しがあるものと評価できる。

基本条件である発電出力は、BWR 176 万 kW/PWR 178 万 kW の大出力化を達成しており、80 万~100 万 kW 級についても、大型炉のプラント概念を踏襲しつつ、主要機器の容量低減や基数削減により実現できる見通しである。経済性については、国際的にも現行水準の建設単価に多雨する十分な優位性が確保されている。また、大モジュール化工法等による建設期間 30 ヶ月への短縮及工期遵守を達成している。発電コストについても他電源に対する競争力確保の見通しから、安全性や社会受容性については、免震技術や安全システムの強化による外的要因やシビアクシデントへの対応が図られている。さらに、2012 年度末まで概念設計を継続し、2015 年度までに基本設計を完了するものとなっている。実用化に必要な実験装置・基準整備を含め、プラント構築に踏まえた開発ロードマップが描かれ、関係機関と共有されているか、また、早期の実用化見通しが得られているか

要素技術開発について、これまで約 2 年間の技術開発や試験等により実用化の見通しを得たと評価できる。

また、今後必要な要素技術開発についても、安全規制及び整備基準の整備も含め実用化を踏まえたロードマップが策定され、関係機関と共有されていると評価できる。ロードマップは、2012 年度末まで概念設計を継続し、2013 年度以降は要素技術開発の進捗、成果を取り込みつつ 2015 年度までに基本設計を完了するものとなっている。また、2016 年度以降は、一部時間を要する照射試験等の技術開発を継続するとともに、規格・基準化活動等を行い、許認可対応を経て、2030 年頃の運転開始可能なものである。

実用化に必要な安全指針・規格基準類の策定・改定等についても、課題やスケジュール等を整理したロードマップを策定し規制機関や学協会との調整を開始した。なお、規制機関と意見交換を進めてきた結果、基本政策小委員会報告書において、次世代軽水炉への規制上の対応や設計認証制
度の効果や必要性等の検討について明示的に記載され、規制側においても検討課題として認識された。

燃料及び一部の炉心等の技術を除いた技術は、必要な規格基準の整備とエンドースを含め、2024年度末頃にはプラントとしても実用化可能なロードマップが策定されており、早期の実用化の見通しが得られていると評価できる。

【開発体制】我が国の総力を挙げた開発体制が実効的かつ効率的に機能していると共に、開発リソースについても有効利用が図られているか

開発推進に係る意思決定機関（推進委員会）及びステアリング機関（連絡調整会議及び幹事会）、並びに活動を外部から評価する評価機関（評価委員会）からなる体制を整備し、プロジェクトの進捗管理についてPDCAサイクルを廻しながら進めており、開発体制は実効的、効率的に機能していると評価できる。

評価委員会や技術的な検討を行う分科会において、産業界や学協会等の有識者からの助言を得ることにより開発を進めるなど、我が国の総力を挙げた開発体制が実効的に機能している。また、中核機関が開催する分科会において、プラントメーカを始め、関連する燃料メーカ、素材メーカ、建築会社等が最先端の知見を、また、電気事業者はプラント運用技術等の知見を出し検討を進めており、我が国の総力を挙げた開発が行われている。さらに、プラント概念検討においても、メーカー各社がアイデアを出し合うことにより魅力的なプラント概念の構築に至った。

また、開発計画策定にあたり、大学、日本原子力研究開発機構、電力中央研究所、海外の研究機関等の原子力開発に係るノウハウを有する機関と連携を図り、既存設備の有効利用や蓄積された経験・知見などの開発リソースを有効に活用した計画となっていると評価できる。
9. おわりに

次世代軽水炉開発は、我が国既設炉のリプレースの円滑化、原子力産業の国際展開と競争力の確保、それらを支える技術と人材の維持・強化に資するものとして、2008年度から本格着手したものである。これまでの約2年間の取り組みにより、国内及び海外のユーザにとって魅力的なプラント概念がBWR及びPWRそれぞれ1炉型構築され、その概念の成立性の見通しを得た。また、プラント概念の成立に必要な要素技術においても開発及び検討を進め、その実用化の見通しが得られ、早期実用化を踏まえた今後の開発計画を策定した。さらに、プラントの実用化と特長を活かす観点から安全規制及び規格基準の整備に係る検討を進め、今後必要となる取組に関しロードマップを策定し、関係者と協議を開始した。一方、開発推進に係るマネジメントとして、中核機関、メーカ及び電気事業者の協働体制を確立し、規制機関や大学や研究機関の有識者等の参画を得て、我が国の総力を挙げた取組にて実施してきた。

また、これまでに確立した次世代軽水炉のプラント概念は、国内外のユーザにとって魅力的な経済性、安全性等の特長を有するものと評価している。なかでも、競争力のある建設単価や発電コスト、短期の建設期間、設計標準化などは、国内リプレースの円滑化や国際展開の促進に資するものである。大出力化により電力需要増への対応も可能なこと、また、設計標準化による許認可期間の短縮が実現できれば、立地計画から運転開始までのリードタイムのさらなる短縮となり、その経済性や安全性、社会受容性と相まって、リプレースに係る経営的判断を促進するものと考えられる。

本開発は、開始後約2年間を経過したが、ナショナルプロジェクトとして当初の期待どおりの成果を得ることができており、今後の開発計画についても合理的なものとなっている。開発の成功のために、今後も引き続き、中核機関、メーカ、電気事業者、国が連携して応分の役割を担い、さらに規制機関や大学、研究機関などの関係者も含め、我が国の総力を挙げた体制にて取り組んでいくこととしたい。
用語解説

ABWR（Advanced Boiling Water Reactor）
改良型沸騰水型原子炉

APWR（Advanced Pressurized Water Reactor）
改良型加圧水型原子炉

BWR（Boiling Water Reactor）
沸騰水型原子炉

EPR（European Pressurized Water Reactor）
欧州加圧水型炉

IAEA（International Atomic Energy Agency）
国際原子力機関

IASCC（Irradiation Assisted Stress Corrosion Cracking）
照射誘起応力腐食割れ。中性子照射により SCC 感受性が発現して発生した応力腐食割れ

IVR（In-Vessel Retention）
圧力容器を外側から冷やして溶融デブリを圧力容器内に保持する手法

OECD/NEA（Organization for Economic Co-operation and Development/The Nuclear energy Agency）
経済協力開発機構 原子力機関

PDCA プロセス
計画(Plan)を実行(Do)し、評価(Check)して改善(Act)に結びつけて、その結果を次の計画に活かすプロセス

MOX（Mixed Oxide）
混合酸化物の略。ウランとプルトニウムを酸化物の形で混合した燃料

PWR（Pressurized Water Reactor）
加圧水型原子炉

SCC（Stress Corrosion Cracking）
応力腐食割れ

ウラン濃縮度
天然ウラン中のウラン 235\(^{235}U\)の存在割合。\(^{235}U \text{重量} / \text{U重量} \times 100 \ [\text{wt%}] \)

格納容器機能喪失頻度
シビアアクシデント時に、格納容器の放射性物質閉じ込め機能が喪失する事象の１年あたりの発生確率

鋼板コンクリート構造（SC構造）
鉄筋コンクリートの鉄筋を鋼板に置き替えた鋼板とコンクリートの複合構造にしたもので、大型ブロック化により工期の短縮と省力化が可能となる

時間稼働率
暦時間に対する発電時間の百分比（時間稼働率 = 発電時間 / 暦時間 × 100 [%]）

シビアアクシデント
設計基準を大幅に超える事象であって、安全設計の評価上想定された手段では適切な炉心の冷却または反応度の制御ができない状態であり、その結果炉心の重大な損傷に至る事象をいう
静的格納容器冷却系
原子炉事故時にポンプなどの動的な機器を使わずに格納容器の冷却を行うシステム

船殻構造鋼板コンクリート
鉄筋コンクリートの鉄筋を鋼板に置き替えた鋼板とコンクリートの複合構造物で、造船技術を応用したもの

燃焼度、平均燃焼度
原子炉に装荷された物質が中性子との核反応により、着目する時点で発生した総発熱量を含めている燃料物質の単位重さあたりで表したもので、単位は [MWd/t] = 10^-3[GWd/t] がよく使われる。特に、燃料取出時での値を取出(平均)燃焼度と呼ぶ

燃料サイクル費 (Fuel Cycle Cost: FCC)
単位発電電力量 (kWh) を得るため必要な原子燃料に係わる費用で、燃料を炉に装荷する前（フロントエンド）における費用と、燃料を炉から取り出した後（バックエンド）にかかる費用を合計して算出される

免震
構造物に伝達される地震力を小さくすること。
免震装置は、上部構造と下部構造の間に設置され、上部構造を支持すると同時に固有周期を長周期化させる積層ゴム免震要素、及び上部構造の震動エネルギーを吸収するダンパーから構成される

溶融デブリ
炉心溶融事故によって燃料や炉内構造物が溶けたもの

炉心溶融
原子炉の炉心冷却が不十分な状態の継続や炉心の異常な出力上昇により、炉心温度が上昇して溶融に至ること

炉心損傷頻度
炉心損傷が発生する事象の 1 原子炉、1 年あたりの発生確率
付図HP・APWR（次世代PWR）