Nuclear Energy and Nuclear Fuel Cycle Policy Options after the Fukushima Accident

East Asian Alternative Nuclear Weapons Future Conference &
East Asian Alternative Energy Futures Conference
Honolulu, Hawaii,
February 26, 2014
Tatsuiro Suzuki
Vice Chairman, Japan Atomic Energy Commission

Note: The views expressed here are of my own and do not necessarily reflect those of the JAEC nor the government.
Summary

• After 3/11, priority of nuclear energy policy has changed significantly. **Top priority should be on measures dealing with the Fukushima Daiichi nuclear power plant decommissioning and securing welfare of people affected by the accident.**

• Given the uncertainty in future directions of nuclear energy, priority should be on the necessary measures regardless of future of nuclear energy policy.

• Based on the assessments, on economics, safety, and proliferation risks etc., made by the subcommittee, JAEC issued a policy statement that **nuclear fuel cycle policy needs to be more flexible** in order to cope with future uncertainty.

• Specifically, priority should be on the following measures.
 – Expansion of spent fuel storage (especially dry cask storage)
 – Measures to enable “direct disposal” of spent fuel
 – Plutonium stockpile management
Japan Atomic Energy Commission (JAEC)

The Role of Japan Atomic Energy Commission

The Japan Atomic Energy Commission is set up in the Cabinet Office and has five commissioners. Its mission is to conduct planning, deliberations, and decision-making regarding basic policy for research, development, and utilization of nuclear energy, including the formulation of the Framework for Nuclear Energy Policy except matters related to nuclear safety regulation. When the JAEC deems it necessary as a part of its assigned mandate, JAEC can recommend and demand reports of the head of relevant administrative organization through the Prime Minister.

Members: 5 (appointed by the Prime Minister with the consent of the House of Representatives and House of Councilors)

Chairman
Dr. Shunsuke KONDO

Vice Chairman
Dr. Tatsujiro SUZUKI

Commissioner
Ms. Etsuko AKIBA

Commissioner
Dr. Mie OBA

Commissioner
Dr. Akira OMOTO

RESIGNED

RESIGNED
Role of JAEC (??)
- A small tag-boat for a giant Titanic? –
Role of AEC should be fundamentally changed from basic policy maker as a promoter of nuclear energy to act as an advisor for better governance of nuclear energy, while maintaining its neutral positions. Its activities should focus on the following areas:

① Assuring peaceful use of nuclear energy and non-proliferation
② Management and disposal of radioactive waste
③ Other important matters (such as decommissioning of Fukushima nuclear power plants)

Fukushima Daiichi Decommissioning and Restoring life in Fukushima area
Struggling with contaminated water...during the recent typhoon (Sept. 15, 2013)

"I think the current situation is that it is not under control," by a TEPCO official.

-Fukushima ‘not under control’ – TEPCO official refutes PM's assurances, Reuter, Sept. 13, 2013

Mid-Long Term Roadmap for Fukushima Dai-ichi

Targets under the Initial Roadmap

December 2011 (Roadmap established) to December 2013

- Efforts to stabilize the NPS
 - Cold shutdown achieved
 - Achieve cold shutdown
 - Significantly reduce radiation releases

Phase 1: Period up to the commencement of the removal of the fuel from the spent fuel pool (within 2 years)

Phase 2: Period up to the commencement of the removal of the fuel debris (within 10 years)

Phase 3: Period up to the completion of decommissioning measures (30 to 40 years in the future)

Plan under the Revised Roadmap (example: Unit 2)

- Existing reactor building
- Roadmap crane
- Fuel Handling Machine (FHM)
- Upper container
- Separate container

- Plan 1: When the existing reactor building can be decontaminated and the FHM can be restored

- Plan 2: When the reactor building has sufficient seismic resistance for a container to be constructed on its upper level

- Plan 3: When the reactor building lacks sufficient seismic resistance, necessitating the construction of a separate container

First half of FY2020 (one-and-a-half years earlier than the initial plan)

- Commencement of the removal of the fuel debris

First half of FY2021 (6 months earlier than the initial plan)

- Commencement of the removal of the fuel debris

First half of FY2024

- Commencement of the removal of the fuel debris

Source: Agency for Natural Resources and Energy, Announcement of the Revised Version of the Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station Units 1-4, June 2013
Evacuation Area Amended (13/08/08)

(2012/04/29) (12/12/10) (13/04/01) (13/08/08)

<20mSv/年 20-50mSv/年 >50 mSv/年

http://www.kantei.go.jp/saigai/pdf/20130307gainenzu.pdf,
Cherry blossom in Tomioka Town
(10 km from Fukushima Daiichi, 2012/04)
Compared with the Chernobyl accident

Restoring Public Trust in Nuclear Safety and Energy Policy
Goal of Power Production Mix in 2030
Before 2011/3/11

Transition of energy source composition

Source: Institute of Energy Economics, March 2010
What is your opinion about nuclear power in Japan?

日本の原子力発電はどうあるべきか

※2013年の調査では、回答項目は「再稼働を認めず、直ちにやめるべき」「再稼働を認めで段階的に縮小すべき」「再稼働を認めで現状を維持すべき」「再稼働を認めで段階的に増やすべき」であった。

Impact of Shutdown of Nuclear Power from FY 2010 to FY 2012

<table>
<thead>
<tr>
<th>Power Type</th>
<th>FY2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable</td>
<td>8.05%</td>
<td>8.1%</td>
<td>8.7%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>61.4%</td>
<td>60.3%</td>
<td>79.1%</td>
<td>83.5%</td>
</tr>
<tr>
<td>Fossil</td>
<td>30.23%</td>
<td>31.4%</td>
<td>11.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Hydro</td>
<td>0.22%</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Share of nuclear power down from 31% to 2%

3.1 trillion yen extra expenses due to loss of nuclear power

Japan’s CO2 emission increased by 70 MT or 5.8% from 2011

Costs associated with accident

8.9 yen/kWh if total accident costs is 6 trill yen. It will increase 0.1 yen/kWh if total accident costs increase 1 trillion yen.

Capital cost:
- Regular costs
- O&M
- Fuel cycle
- Additional cost

Subsidiaries:
- Costs associated with accident
- +1.1 yen/kWh
- +1.4 yen/kWh

Yen/kWh

5.9円

2004年試算

2011年試算

※稼動年数40年、設備利用率70％（実績ベース）、割引率3％
Nuclear power can be competitive, but social costs can be high…

出所: コスト等検証委員会報告書、2011年12月19日
PM Abe’s Statement at Diet on Energy Policy (2013/02/28)

- Reflecting on the accident at Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station, under the Nuclear Regulation Authority, we will foster a new culture of safety that will uncompromisingly enhance the degree of safety. After doing so we will restart nuclear power plants where safety has been confirmed.

- We will promote the introduction of energy conservation and renewable energies to the greatest possible extent to reduce our degree of dependency on nuclear power as much as possible. At the same time, we will begin a fundamental reform of the electric system.

http://www.kantei.go.jp/foreign/96_abe/statement/201302/28siseuhousin_e.html
Recommendations to the Energy Basic Plan (Draft)
by METI’s Advisory Council on Energy
- For Nuclear Energy Policy (2013/12/06)

• We continue to use nuclear energy as an important base-load energy source to support stable energy supply
• We reduce dependence on nuclear energy as much as possible by expanding renewable energy, energy efficiency and more efficient fossil power plants.
• Under this basic policy, considering the constraints of energy resource situations, we maintain the necessary level of nuclear power from the viewpoints of energy supply stability, cost reduction, climate change, human resources to maintain the safety.

http://www.enecho.meti.go.jp/info/committee/kihonseisaku/12th/12th1-2.pdf
Recommendations to the Energy Basic Plan (Draft)
by METI’s Advisory Council on Energy
- For Nuclear Energy Policy (2013/12/06)

(1) Measures to recover and revitalize Fukushima
(2) Enhance safety constantly and establish environment for stable nuclear business operations

(3) Steady progress in measures without delay
 ① Comprehensive and enhanced measures to deal with spent nuclear fuel
 • Strengthen measures for final disposal of HLW
 • Expansion of spent fuel storage capacity
 • R&D on reduction of toxicity/volume of radioactive waste
 ② Steady progress in nuclear fuel cycle
 • Important to increase flexibility of nuclear fuel cycle

(4) Building confidence with citizens, local governments and international society
 ① Public communication after Fukushima accident
 ② Building confidence with local siting community
 ③ Contribution to peaceful use of nuclear energy in the world and non-proliferation

http://www.enecho.meti.go.jp/info/committee/kihonseisaku/12th/12th1-2.pdf
Nuclear Fuel Cycle Options
Nuclear Fuel Cycle Technology Options

- **FBR Cycle**
 - Use of spent fuel in MOX fuel
 - New MOX fuel

- **FBR Reprocessing**
 - Use of spent fuel

- **LWR cycle**
 - Use of spent fuel
 - New MOX fuel

- **Full Recycle**
 - Use of spent fuel

- **Limited Recycle**
 - Use of spent fuel

- **MOX-Loaded LWR**
 - Use of spent fuel

- **SF Storage**
 - Storage of spent fuel

- **Limited SF Storage (Direct Disposal)**
 - Direct disposal of spent fuel

- **Reprocessing**
 - Conversion of spent fuel to MOX fuel

- **U Enrichment**
 - Conversion of LEU to UO2

- **Reconciliation**
 - Conversion of SF to LEU

- **U Fabrication**
 - Fabrication of UO2

- **LWR Disposal**
 - Disposal of HLW and LLW

- **Commericalized in Japan**
 - Commercialization of MOX-Loaded LWR

- **Commercialized overseas**
 - Commercialization of FBR

- **Research & Development**
 - Development of new technologies

- **Plutonium recycling**
 - Recycling of plutonium

- **Not realized yet**
 - Technologies not yet commercialized

- **Natural Uranium**
 - Use of natural uranium in LEU

- **LEU Fabrication**
 - Fabrication of LEU

- **Yellow cake**
 - Conversion of enriched uranium to yellow cake

- **Conversion**
 - Conversion of LEU to UF6

- **U/Pu**
 - Use of Pu in MOX fuel

- **Milling**
 - Milling of spent fuel

- **Reconcersion**
 - Conversion of MOX fuel to spent fuel

- **Current status**
 - Current status of technologies

- **Plutonium recycling**
 - Recycling of plutonium

- **FBR**
 - Use of FBR in nuclear fuel cycle

- **Waste Stream**
 - Management of waste streams

- **Not realized yet**
 - Technologies not yet commercialized
Major Findings of JAEC subcommittee on nuclear power and fuel cycle (12/06/05)

• For the next 20~30 years, “MOX recycling” and “Once-through” fuel cycle are the only commercially available options.
 – “Once-through” is more desirable from economic and nuclear proliferation/security standpoints, but “MOX recycling” is more desirable from resource efficiency standpoint.
 – No significant difference in terms of safety and waste management.

All Reprocessing | Current Model* | Direct Disposal
再処理モデル | 現状モデル | 直接処分モデル
使用済燃料全量を再処理してリサイクルするモデル | 使用済燃料全量を適切な期間貯蔵して再処理していくモデル | 使用済燃料全量を中間貯蔵後に直接処分するモデル

<table>
<thead>
<tr>
<th>Yen/kWh</th>
<th>2.1</th>
<th>2.0</th>
<th>2.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back End</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Front End</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*50% immediate reprocessing and 50% reprocessing after long term storage

Source: National Policy Unit, Energy and Environmental Council, Cost etc. Verification Committee.

Fuel Cycle Economics in Variation of Options (Summary)

<table>
<thead>
<tr>
<th>~3 Fuel Cycle Options ~</th>
<th>~4 Nuclear Share Options ~</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total reprocessing</td>
<td>1. Nuclear share: 35 % (Installed capacity: 50 GW)</td>
</tr>
<tr>
<td>2. Mixed option</td>
<td>2. Nuclear share: 20 % (Installed capacity: 30 GW)</td>
</tr>
<tr>
<td>3. Total disposal</td>
<td>3. Nuclear share: 15 % (Installed capacity: 20 GW)</td>
</tr>
<tr>
<td></td>
<td>4. Nuclear share: 0 %</td>
</tr>
</tbody>
</table>

- For all nuclear share option, **total expense of F.C. option 3 is less than the other F.C. options.**
- As for F.C. option 3, SF stored in Aomori pref. may have to be sent back and under the worst case, **nuclear power operation could be suspended if new SF storage capacity is not available.**

<table>
<thead>
<tr>
<th>Total Expense of Fuel Cycle (Unit: trillion yen)</th>
<th><Discount rate: 0 %></th>
</tr>
</thead>
<tbody>
<tr>
<td>F.C. Option 1 Total reprocessing</td>
<td>F.C. Option 2 Coexistence of reprocessing/disposal</td>
</tr>
<tr>
<td>Nuclear Share Option I: 35 %</td>
<td>18.4</td>
</tr>
<tr>
<td>Nuclear Share Option II: 20 %</td>
<td>15.4</td>
</tr>
<tr>
<td>Nuclear Share Option III: 15 %</td>
<td>14.4</td>
</tr>
<tr>
<td>Nuclear Share Option IV: 0 %</td>
<td>~</td>
</tr>
</tbody>
</table>

Assessment of Nuclear Fuel Cycle Policy Options by Subcommittee (June, 2012)

- “All reprocessing” option: Most desirable when nuclear power will expand or stay as it is
- “Co-existing of reprocessing/direct disposal” option: Most desirable when future of nuclear energy is uncertain
- “All direct disposal” option: Most desirable when nuclear energy will be phased out

As recommended by the technical subcommittee, regardless of the policy choice, it is vital to build a system ready to cope with future policy changes.

http://www.aec.go.jp/jicst/NC/about/kettei/kettei120621_2.pdf
Three types of spent fuel storage capacity
(As of September 2013, total of 17,335 tons are in storage)

At-reactor storage

Storage capacity: 20,640 tU/17 sites (as of Sept. 2013, 14,340 tons ~70% full)
On-site dry cask storage is not allowed by local governments (Fukushima-1 & Tokai-2 was allowed).

Rokkasho reprocessing plant

Storage capacity: 3,000 tU
(storage 2,945 tU as of Sept. 2013)
Construction cost: ¥2.14 Trillion
Commission date: not known

Mutsu Interim storage site
Dry Cask storage type
Capacity: totally 5,000 tU
 1st 3,000 tU, add 2,000 tU in future
Operation: October 2013 (postponed)
(Status: under construction)
Construction cost: ¥0.1 Trillion
(including dry casks)
Dry Cask Storage at Fukushima Daiichi (after 3/11)

http://photo.tepco.co.jp/library/110909_2/110909_69.jpg
Basic Policy for FY 2014 Nuclear Energy Budget (2013/07/17)

• On nuclear fuel cycle policy, there are measures which are necessary regardless of future of nuclear energy policy. Parties should promote such measures with increased flexibility as JAEC decision on June 21, 2013.

• Especially, government should take more active leadership in expanding storage capacity of spent fuel, measures to enable direct disposal and final disposal of high-level radioactive waste.

• Especially, on plutonium management, principle of “no plutonium surplus policy” should be strictly followed, with enhanced transparency and more persuasive programs than the current measures.

http://www.aec.go.jp/jicst/NC/about/kettei/kettei130717.pdf
JAEC’s “No Pu surplus policy”

• Since 1991, Japan stick to a principle of “no plutonium surplus policy”, i.e. Japan does not have any plutonium which does not have specific purposes to use.

• In August 2003, JAEC announced its new guideline for plutonium management preparing for commissioning of the first commercial reprocessing plant.
 – Utilities are expected to submit its plutonium usage plan annually before separation of plutonium.

But, Japan now has 44 tons (35 tons in Europe, 9 tons in Japan) of stockpile.

“Plutonium stockpile should be reduced regardless of fuel cycle options chosen in the future”

(Statement in JAEC Subcommittee on Nuclear Power/Nuclear Fuel cycle technologies)
Pu Use Plan for Rokkasho (FY2010)

<table>
<thead>
<tr>
<th>Region</th>
<th>Pu stock (End of FY 2009)</th>
<th>Pu recovered (FY2010)</th>
<th>Pu stock (End of FY2010)</th>
<th>Reactors for Pu use</th>
<th>Pu use per year</th>
<th>Planned period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokkaido</td>
<td>72kgfis</td>
<td>0</td>
<td>72kgfis</td>
<td>Tomari#3</td>
<td>0.2tonfis/y</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Tohoku</td>
<td>78</td>
<td>0</td>
<td>78</td>
<td>Onagawa#3</td>
<td>0.2</td>
<td>FY2015~</td>
</tr>
<tr>
<td>TEPCO</td>
<td>748</td>
<td>0</td>
<td>748</td>
<td>3〜4 unit include Fukushima-1#3 (planned)</td>
<td>0.9~1.6</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Chubu</td>
<td>182</td>
<td>0</td>
<td>18</td>
<td>Hamaoka#4</td>
<td>0.4</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Hokuriku</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>Shika #1</td>
<td>0.1</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Kansai</td>
<td>556</td>
<td>0</td>
<td>556</td>
<td>Takahama#3,4 1〜2 unit in Ohi</td>
<td>1.1~1.4</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Chugoku</td>
<td>84</td>
<td>0</td>
<td>84</td>
<td>Shimane#2</td>
<td>0.2</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Shikoku</td>
<td>133</td>
<td>0</td>
<td>133</td>
<td>Ikata #3</td>
<td>0.4</td>
<td>FY2015~</td>
</tr>
<tr>
<td>Kyushu</td>
<td>315</td>
<td>0</td>
<td>315</td>
<td>Genkai #3</td>
<td>0.4</td>
<td>FY2015~</td>
</tr>
<tr>
<td>JAPCO</td>
<td>140</td>
<td>0</td>
<td>140</td>
<td>Tsuruga#2. Tokai#2</td>
<td>0.5</td>
<td>FY2015~</td>
</tr>
<tr>
<td>J-Power</td>
<td>(purchase from others)</td>
<td></td>
<td></td>
<td>Ohma</td>
<td>1.1</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>2,317</td>
<td>0</td>
<td>2,317</td>
<td>--</td>
<td>5.5~6.5</td>
<td>--</td>
</tr>
</tbody>
</table>

Plutonium Stockpile in Japan (as of the end of 2012)

<table>
<thead>
<tr>
<th>Stock in Japan (Pu total)</th>
<th>2012 (kg)</th>
<th>2011 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprocessing Plants</td>
<td>4,363</td>
<td>4,364</td>
</tr>
<tr>
<td>MOX Fuel Plant</td>
<td>3,364</td>
<td>3,363</td>
</tr>
<tr>
<td>Stored at Reactors</td>
<td>1,568</td>
<td>1,568</td>
</tr>
<tr>
<td>Sub-total (Pu fissile)</td>
<td>9,295(6,315)</td>
<td>9,295 (6,316)</td>
</tr>
<tr>
<td>Stocks in Europe (Pu total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>17,052</td>
<td>17,028</td>
</tr>
<tr>
<td>France</td>
<td>17,895</td>
<td>17,931</td>
</tr>
<tr>
<td>Sub-total :Pu total (Pu fissile)</td>
<td>34,946 (23,277)</td>
<td>34,959(23,308)</td>
</tr>
<tr>
<td>Total (Pu fissile)</td>
<td>44,241(29,592)</td>
<td>44,254(29,624)</td>
</tr>
</tbody>
</table>

Global Civilian Plutonium Stockpile (2011)
- Reprocessing has international security implications -

Source: International Panel on Fissile Material (IPFM), Global Fissile Material Report 2013,
Japan’s Plutonium Stockpile

• “On nuclear security, Japan and the United States committed to continue to strengthen the nuclear security posture of both countries and to fundamentally reduce the threat that terrorists could acquire nuclear material. Key steps towards these goals include the following:
 – Reducing the quantities and attractiveness of weapons-usable nuclear material;”

1. **Demand comes first**: Reprocessing should take place only when plutonium demand (use) is specified. In order to achieve this goal, spent fuel storage capacity must be expanded.

2. **Stockpile reduction**: Matching demand/supply is not good enough. Existing stockpile should be reduced before further reprocessing.

3. **Flexible plan**: Current Pu use plan (MOX recycling in 16~18 units) is no longer certain. Other options (Pu ownership transfer, disposition as waste etc.) need to be pursued. With minimizing cost, transportation and time required to dispose.
REFERENCE
Life cycle analysis of exposure risk

安全性：ライフサイクルでの被ばくリスク(2/3)

核燃料サイクルの主要工程毎の被ばく量概算値について

<table>
<thead>
<tr>
<th>核燃料サイクル工程</th>
<th>操業後500年間にわたるヨーロッパの一般公衆の集団被ばく線量 解析値 (manSv/GWe-year)</th>
<th>作業従事者の集団被ばく線量 (manSv/GWe-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Once-through</td>
<td>Recycle</td>
</tr>
<tr>
<td>採掘、精錬</td>
<td>1</td>
<td>0.79 (1)</td>
</tr>
<tr>
<td>転換、濃縮</td>
<td>0 (2)</td>
<td>0 (2)</td>
</tr>
<tr>
<td>燃料成形加工</td>
<td>0.0009 (4)</td>
<td>0.0007 (3)</td>
</tr>
<tr>
<td>発電</td>
<td>0.65 (6)</td>
<td>0.65 (6)</td>
</tr>
<tr>
<td>再処理、ガラス固化、中間貯蔵</td>
<td>0</td>
<td>1.534 (8)</td>
</tr>
<tr>
<td>合計</td>
<td>1.65</td>
<td>2.97</td>
</tr>
</tbody>
</table>

注釈
1. 天然ウラン必要量に基づいて算出、作業従事者の線量はUNSCEAR88による
2. 燃料成形加工による影響に含めた
3. UO2とMOX燃料の重量(21.1t、5.5t)で重み付けして算出
4. 一般公衆解析結果: Romans 3.21×10^-4, Melox 2.51×10^-3
5. 作業従事者: Romans 6.57×10^-3, Melox 4.3×10^-1
6. 一般公衆: 海岸 0.54, 内陸 0.65
7. 作業従事者: フランス 900MW(e)プラントの平均
8. 一般公衆: サイトを特定しない一般的な評価
9. 作業従事者: La Hagueにおけるデータ

2012/3/1 原子力発電・核燃料サイクル技術等検討小委員会（第9回）

Potential Hazard of HLW by form

廃棄物： 高レベル放射性廃棄物の潜在的有害度（毒性）(2/2)

図2 ハイレベル廃棄物の潜在的有害度

- Direct disposal
- Vitrified waste from LWR Reprocessing
- Vitrified waste from FR Reprocessing

(注1) 高レベル放射性廃棄物と人間との間の障壁は考慮されておらず、高レベル放射性廃棄物の実際の危険性ではなく、潜在的な有害度（経口摂取による年摂取量で規格化）を示している。使用済燃料取り出し直後の潜在的影響を1とした相対値。

出典：原子力委員会 原子力政策大綱（平成17年）を基に編集

2012/3/1 原子力発電・核燃料サイクル技術等検討小委員会（第9回） 42

Potential Exposure Risk from HLW

“What if” case studies in Switzerland assuming 100 times speed of underground flow

スイスの解析例 “what if”ケースとして、地下水の流量をリファレンスケースの100倍と仮定した場合の放射線量

直接処分の場合（左上図）及び再処理を行った場合（右上＋右下図）のいずれも、廃棄物からの被ばく線量は、諸外国で提案されている安全基準（0.1〜0.3mSv/年）に比べて十分低い