Mid-to-Long-Term Roadmap for Decommissioning of Fukushima Daiichi NPP and International Cooperation

Kentaro Funaki Director, Office for the Restoration from Nuclear Accident Agency of Natural Resources and Energy (ANRE) Ministry of Economy, Trade and Industry (METI), Japan

> Side event by Government of Japan at 56th IAEA General Conference, Sep 17, 2012

- Mid-to-Long-Term Roadmap for Decommissioning of Fukushima Daiichi NPP
- 2. R&D Roadmap
- 3. International Cooperation

1. Mid-to-Long-Term Roadmap for Decommissioning of Fukushima Daiichi NPP

Mid-to-Long-Term Roadmap and Primary Targets

"Government and TEPCO Council on Mid-to-Long Term Response for Decommissioning", which was established last December, adopted the "Midto-Long-Term Roadmap for TEPCO's Fukushima Daiichi Units 1 to 4." This Roadmap defines the term of decommissioning into three phases, and outlines major milestones of on-site work and R&D projects

<u>**Phase 1</u>**: From the completion of Step 2 (last December) to the commencement of fuel removal from spent fuel pools (Target: Accomplish in 2 years)</u>

<u>Phase 2</u>: From the end of Phase 1 to the commencement of fuel debris removal from RPVs (Target: Accomplish in 10 years)

<u>Phase 3</u>: From the end of Phase 2 to the end of the decommissioning process (Target: Accomplish within 30 to 40 years)

Roles of the Government and TEPCO on the Mid-to-Long-Term Roadmap

- Role of the Government
 - > METI/ANRE

•Oversee the progress of the Roadmap and TEPCO's onsite work

PDCA Management of the R&D program

NISA (Regulatory Authority)
 •Prepare necessary regulatory systems
 •Ensure safety

Role of TEPCO

•On-site work, consistently ensuring human resources and project management, as the responsible site operator

Organizational Structure

Government and TEPCO Council on Mid-to-Long Term Response for Decommissioning

- Co-Chair : Mr. Hosono, Minister for the Restoration from and Prevention of Nuclear Accident, Cabinet Office Mr. Edano, Minister of Economy, Trade and Industry (METI)
- Vice-Chair : Parliamentary Secretary of Cabinet Office, Vice Minister of METI, and President of TEPCO
- Members : Agency of Natural Resources and Energy(ANRE), The Nuclear and Industrial Safety Agency (NISA)

	Management Board	R&D Management Headquarter						
Co-Chair:	Mr. Sonoda, Parliamentary Secretary of Cabinet Office Mr. Kitagami, Vice Minister of METI Mr. Aizawa, Executive Vice-President of TEPCO Ms. Kamimoto, Vice Minister of MEXT	Chair : Mr. Kitagami, Vice Minister of METI Vice-Chair: Mr. Sonoda, Parliamentary Secretary of Cabinet Office Ms. Kamimoto, Vice Minister of MEXT						
Members:	METI/ANRE TEPCO NISA (Nuclear and Industrial Safety Agency) MEXT (Ministry of Education, Culture, Sports, Science and Technology) JAEA (Japan Atomic Energy Agency)	TEPCO MEXT AEC (Atomic Energy Commission) JAEA AIST CRIEPI						
	Toshiba Hitachi-GE	Toshiba Hitachi-GE and a couple of academic advisors						

Major Schedule of the Roadmap

- TEPCO's on-site work and government-led R&D program are clearly differentiated.
- Some of the on-site work will proceed in a phased process, based on R&D results.
- At the key points for judgment on the progression to subsequent processes, there will be further deliberation and judgment, including additional R&D and revision of process and task content. These are set as Holding Points (HPs).

7

			Phase 1			Phase 2									Phase 3			
		Period to the start of feel renoval from the spent feel pools			Pariod to the start of feel debris reasonal								Period to the and of decommissioning					
				FY2012	FY2013	FY2014	FY2015	FY2016 F	Y2017 FY	2018	FY2019	FY2020	FY2021	FY2022~-				
					Within	2 years ((Early)		(Mid)			(Lata)	Within	10 years	After 20-25 year:	After 30	40 years	
Primary Targets Step 2 G		ompleted		SFP Fuel R (Ur	emoval Start nit 4)							Fuel Debris F (First	lemoval Start Unit)	Fuel Debris Remova Completed (All Units	Decommi Gompleted	issioning (All Units)		
Disp for			Ongoin	ng Monitoring of React	or Cold Shutdow	n States (Maintain	water injection and mo	titoring using ten	perature and pre	essure par	rameters etc.)			1		: Or	-site Work	
	Plan for Reactor Cooling		Part	tial Internal POV Inspe	otion		VTarget:	Complete Switch	to Water Withdr	awal from	Reactor Buliding	(or lower)	art of PCV)			: R& : Can	Daiderationa	
			Improving the l	Reliability of Circulatin	ng Water Cooling	(water withdrawal f	from turbins-building)	Circulating Wat	er Cooling (wate	r withdrav	wal		Circulat Withdra	ing Water Cooling vel from PCV (sho	vie Weter	: Conditions for	Next	
Maintaining					(*1): To [HP3-	IL PCV Repairs, S	topping Inter-building \	Water Leakage	(•2)	From (#4)	Reactor Buildin	g Container	installation e	to. (Considerati	an based on	Information Flo		
Plant in an					larget: improve	Reliability of East	ing Facilities	1	· ·	the instal	btion progress st	tatus of rea	ctor building o	antainer)				
Ongoing Stable State			Proceeding the Exter	ting Proceeding Facilities					HP Completion	of Stopping	g Inter-building Via	• \`	Target: Comp		ed mater Processing in			
Stable State	Plan for		ingroving the Reliabili	ity of Existing Facilities etc.	Accumula	ted Water Processi	ing via Reliability Impro	wed	Ladings bot	tween Read	stor and Turbine Bu							
	Processin	ted water	Consideration of Ora	dation Circulation Loop				Consideration of Circuist	lan) Circulation Loop D	• 2 ••••	>	/						
	FIOCASS	•	Consideration of	Subdrain Water Processi	ng -+ Accumulated	Water Reduction ()ov	ver accumulated water lev	vel inside buildings a	cording to under;	ground wat	er level reduction)		Process	ing of Undergroun	d and Decontaminated Wa	ter etc. 🔷		
			Installation of Multi-r	rudida					Reduction of A	coumulate	d Water in Turbine/	Reactor						
				Watan Shialdina Wall	. Installation		get: Reduction of the l	Risk of Expanded	Sea Water Cont	anination	when Contamina	ted Water I	eales					
				water onleiding wait	sinscellation													
	Plans to I	litigate		VTarget I	eduction of Radi	pactive Substance	Concentrations in Sea	•										
	Sea Water		Covering Seabed Soli	in boot of		L												
	Contamin	ation	Circulating Sec	Covering D	redged Sand at Sea	way/Anchor Ground	SI											
-					-		Linderground We	star and Security	Manitarian (ana	(anima)	1							
Plan to Reduce																		
Radiactive	Plans for Ru Radioacti ^{et}	Rubble			V Target: Attains	pent of Dosage Bel	low 1 mSv/year at Site	e Boundaries due	Sources such a	s New Em	essions of Radioa	otive Subs	tances etc. fr	im the Power S	tation as a Whole			
Dosage in		etc.	Reduce Redieti	ion Dose from Stored	Continue Red	uction Efforts	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ontinue Storage										
the Power Station as a	ve Waste	Currenter		1							1							
Whole, and to Mitigate Sea Water Contaminati on	Managem Seco ent and y Wa Dose from Reductio Wate	y Waste	Stored Water Proc	easing via Shielding etc.				ontinue Storage						E a sille a f				
		from	Reduce Radiation D	cee from Secondary Waste	Continue Red	uction Efforts								Facility P	Replacements Garry or	100		
		Water Processin	Assess Cherecte	erlatics of Secondery We	ste from Water	Fadility Replacement Plan Development									(*5): Go to	Radioactive		
	n at the Site	£	(Final processir	ng/disposal will be cor	bidered in the ra	dioactive waste pro	oessing/disposal plan)								Waste Proc	ss/Deposal		
	Boundari (es [Gaseous/ Liquid Waste	PCV Gas Control :	System Installation														
			Land/Sea	Area Monitoring (ongo	ing)						1					\rightarrow		
	Plan for Field Test			∀Target: Change Ma	in Anti-carthqua	æ Building into an	Area where Radiation	Controls are not	Required									
			Surta: 1	in Chaite Bassari - i	V Target: Reduce	Radiation Dose at	t Corporate Buildings (implement per pa	rtner companies	needs)	disting day	talda affat						
			Systemati	io Unsite Decontamin	ation (implement	step-by-step mom	executive and working	area in conjunct	ion with efforts t	o reduce	radiation cose ou	tsice of the	: site/					
	SFPs of Units 1-4		Circulation C	ooling of the Pools (In	nprove Reliability	via maintenance ar	nd replacement etc.)											
			[Unit 1] Considers	[Livit 1] Consideration of Fuel Removal Measures / Investigation of Units States, of Rattle etc. Propers for Fuel Removal Pressue of Rattle etc. Fuel Removal Pressue of Rattle etc. Fuel Removal Pressue of Rattle etc.														
Plan for Fuel Removal from Spent Fuel Pool			[Unit 2] Consideratio	n/Preparation of Deportuninatio	n/Shielding Inside the but	ldnge) Decontaminatio	m/Shiding Fadilty Saryly, Plan	ning Facility Inspection,	Regeline > 📃	Fuel Re		>>						
				(•3)	VTarget: Complete D	tris Record 78	tert Faul Reserved (Target in	Comercia Streemen										
			[Unit 3] Removal o	of Rubble lapper part of reacts	and Cover for Fuel Fler	nove In the pools/Fuel Su	every.		>>>									
			This Alternated State	Install Fuel Ha	ding Facilities - Family	el of Debris												
	Common Pool		Site Harbor D	actoration c	war concerning in the pot	Charles Statisty			1									
			Cite Hereoff P			Storage of Fue	Assemblies Removed	mom SEP (store	/manage/			Ť			Gerry out			
			Ceak Manufacturing G	axag-cy-itago > Cask Ma	nufscharing/ Delivery (st	ip-by-step)						L .						
			Common Pool Re	storation Common Po	d Real Renoval and Facil	ty Nodifications						IP Dete	mination of N	ethods for				
					4	ATarget: Complete	Camman Pool Modific	ations for Fuel S				-						
	R&D		Long-term I	integrity Assessment	of Fuel Assemblie	es Removed from S	FPs				1							
					Consider I	Handling Method of	Damaged Fuels from t	the SFPs				• >						

*This roudmap will be updated in consideration of the on-site situation and the latest research and development results.

1/2

HP: Hold Point (Points of Judgement)

8

Major Areas in the Roadmap

The Management Board supervises the progress of the Roadmap. The major areas the following:

- Circulating Water Injection Cooling
- Accumulated Water Treatment
- Reducing of Environmental Radiation Dose
- Improvement of Work Environment
- Fuel Retrieval from Spent Fuel Pool
- Preparation for Fuel Debris Removal
- Radioactive Waste Treatment and Disposal

The Roadmap Updated in July

The "Government and TEPCO Council on Mid-to-Long Response for Decommissioning" held its second meeting on July 30, 2012, and adopted the updated roadmap, which:

■ reflects the latest version of TEPCO's "Facility Operation Plan" for increasing reliability of equipment and site facilities

highlights major outcomes to date

clarifies short-term targets and milestones in response to the progress of the roadmap

2. R&D Roadmap

11

Major Areas in the R&D Roadmap

- Long-term management of retrieved fuel from SFP
- Preparation of fuel debris removal
 - Equipment/device development
 - Core status assessment and analysis
 - Fuel debris characterization and management
- Radioactive waste treatment and disposal
- Remote-controlled technologies as a common base

Organizational Structure for Managing R&D Projects

Three Principles for Implementing the R&D Program

- Address on-site technological needs
- Government involvement and support
- Open and flexible framework for implementation with support from international engineering and science communities

R&D Roadmap (Example)

Milestones for Fuel Debris Removal (Defueling)

Step 1: Reactor Building Decontamination

Decontamination of the area is essential to following procedures.

- Research and technology development of high-pressure washing, coating, scraping, etc.
- Combined usage of shielding

- High dosages (~ 5 Sv/h).
- Obstacles such as rubble scattered in R/B.
- Smaller space due to the compact design of BWR4

Steps 2&3: Identification and Repair of the PCV Leakage Points

Leaking locations will be investigated from outside the PCV and will be repaired

- High dose rate and humidity of PCV inside.
- Most "suspicious locations" are underwater with poor visibility.
- Repair work has to be conducted while highly radioactive cooling water is running for continuous fuel cooling

Steps 4&5: Flooding of the Lower PCV, and Inspection & Sampling

- Once the PCV gains its boundary, water will be filled (flooding)

- The distribution and characteristics of the fuel debris will be investigated

- High dose rate, limited accessibility and poor visibility.
- Leak-tight penetration is required for the investigation device once PCV flooding is achieved.
- Subcritical assessment

- 1) Filling entire PCV/RPV with water after repairing upper PCV
- 2) R/B container and overhead crane will be installed for defueling.
- 3) RPV/PCV top heads will be removed after sufficient water is attained

- High dose rate, limited accessibility.
- Seismic stability after flooding has to be maintained considering water mass.
- Prevent radioactive substances release from PCVs
- Subcritical assessment

Step 8: Internal RPV Inspection& Sampling

Condition of RPV internal and Fuel debris will be investigated

- High dose rate, limited accessibility and poor visibility.
- Development of necessary devices
- Subcritical assessment
- Store the removed debris

Fuel debris and RPV internal structure will be removed

Major Challenges and Difficulties:

Fuel debris is assumed to have fallen onto the complicated RPV bottom structure (BWR structures are much more complicated than those of PWRs)
Debris may have fallen even out of the RPV (debris remained in PRV in TMI-2)

22

•Diversity of neutronic, mechanical and chemical properties of debris as a mixture with different types of metals and concrete

Subcritical assessment

Store the removed debris

1. Properties Investigation and Characterization

- Properties differ from conventional waste, such as rubble, sludge, and decontaminated waste liquid (nuclide composition, chloride content, etc.)
- Basic information needs to be assessed for the development of each technologies

Examples of differences with conventional waste

- Main nuclides: Co-60, C-14, etc.
 - \rightarrow Fukushima Daiichi: Cs-137, Sr-90, etc.
- Sodium concentration is 5 times that of the TMI case due to 50-90% contamination by seawater
- $\rightarrow \! \text{Lower}$ Cesium absorption performance, increased waste generation
- Presence of sludge and other materials of unknown chemical composition
 - \rightarrow Need to identify these materials through analysis

Outputs

- Radioactive concentration of each type of nuclide
- Component content
- Physicochemical characteristics, etc.

Sludge sample (made by JAEA)

Zeolite sample

10

2. Long-term storage technologies

- Impact of chloride (corrosion) and high radioactivity (heat, hydrogen, surface radiation)
- Duration of storage: how long should it be?
- Is treatment necessary before storage?

Output: Long-term storage method for each type of waste

3. Processing technologies

• Can technologies used for existing processing technologies be applied?

Outputs

- Treatment methods for storage
- Methods for production of waste packages
- Performance of waste packages

Source: Japan Atomic Industrial Forum Inc. (ed.), *Radioactive Waste Management: Technical Development and Plans in Japan*, July 1997, p.81.

4. Disposal technologies

- Fundamental new technologies on the existing disposal concept
- Extract and address issues related to safety evaluation and find a solution

Output: Waste disposal methods (required burial depth, construction of an engineered barrier, etc.)

3. International Cooperation

27

- Technological challenges in conducting a wide array of government-led R&D projects require wisdom and expertise from international communities, which indicate potential areas for international cooperation.
- The knowledge and technologies gained from these R&D projects will be valuable common assets for the improvement of decommissioning processes and become a knowledge base for further enhancing safety at nuclear facilities all over the world.
 - Government and TEPCO Council on Mid-to-Long-Term Response for Decommissioning held an International Symposium on March 14, 2012 in Tokyo. This event was organized in cooperation with the IAEA and OECD/NEA.

- 1. Challenges for Defueling:
 - 1) Development of Remote Equipment and Devices

Short-term

- ✓ Monitoring devices for the R/B under high dose environment
 - remote-controlled UAVs, etc.
- Sensing devices for water surface in the S/C and PCV to identify location of leaks
- ✓ Remote-controlled robots running in the water to repair leaks
 - Identify self location in the water
 - Automatic treatment of long-length communication cable
 - Sensor for the shape and water-flow

Mid-term

✓ PCV repair devices and defueling equipment

- 1. Challenges for Defueling:
- 2) Accident analysis for evaluating the core status

Short-term

- ✓ Accident progression analysis and benchmark study, by using existing and improved integral severe accident codes (cf. TMI-2 experience of OECD/NEA joint research)
- Database/information portal to make accident data readily available to the international community.
- Assessment on the validity of severe accident codes and leading greater confidence in the code predictive capabilities

Mid-term

Further analysis applying various models and methodologies
 Collection of physical data during sampling and defueling

- 1. Challenges for Defueling:
 - 3) Characterization and Sampling of Fuel Debris

Short-term

✓ Simulated fuel debris for evaluating its characterization

- Creating and updating database by making use of the experience of the TMI-2 debris study
- Management and storage of fuel debris, and development of a new accountancy method

Mid-term

- ✓ Sampling and analyzing actual fuel debris
- ✓ Deployment of defueling equipment, devices, and storage.

2. Challenges for Radioactive Waste Treatment

Short-term

- ✓ Development of analysis techniques and methods for the characterization of accident-origin solid waste
 - Pre-treatment of solid radioactive waste
 - Simplified and standard methodologies
 - Regulatory and institutional framework
- Management and processing secondary waste storage after water treatment

Mid-term

- Exploring possibility for building a research center for international collaborative research program
- ✓ Researchers/experts exchanges with international community

3. Challenges for Improving the Work Environment

■ Short-term

- \checkmark Technologies and systems to reduce the doses of workers
 - Dose reduction management, including shielding
 - Improving materials for workers' suits
- ✓ Studying methodologies for increasing human performance
 - Advancing human health and performance innovations for severely challenging environments
 - Designing a better work environment

Mid-term

✓ Address human resource needs for the mid-to-long term

Conclusion

In addressing the challenges we are facing, we are committed to the international community to make available information and data from the accident and decommissioning processes, through international collaboration projects.

With lessons learned from the Fukushima Daiichi accident, It is our responsibility to work together with international community for further improving decommissioning processes and knowledge-base for the safety at nuclear facilities.

Thank you very much.

Please visit our website: www.meti.go.jp/english/earthquake/nuclear/decommissioning